Advertisement

Mathematical Programming

, Volume 124, Issue 1–2, pp 119–141 | Cite as

Locating leak detecting sensors in a water distribution network by solving prize-collecting Steiner arborescence problems

  • Alain Prodon
  • Scott DeNegre
  • Thomas M. Liebling
Full Length Paper Series B

Abstract

We consider the problem of optimizing a novel acoustic leakage detection system for urban water distribution networks. The system is composed of a number of detectors and transponders to be placed in a choice of hydrants such as to provide a desired coverage under given budget restrictions. The problem is modeled as a particular Prize-Collecting Steiner Arborescence Problem. We present a branch-and-cut-and-bound approach taking advantage of the special structure at hand which performs well when compared to other approaches. Furthermore, using a suitable stopping criterion, we obtain approximations of provably excellent quality (in most cases actually optimal solutions). The test bed includes the real water distribution network from the Lausanne region, as well as carefully randomly generated realistic instances.

Keywords

Prize-collecting Steiner problem Branch and cut Network leakage detection 

Mathematics Subject Classification (2000)

90C27 90C57 90C90 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Berg M., van Kreveld M., Overmars M., Schwarzkopf O.: Computational Geometry Algorithms and Applications. Springer, Berlin (2000)zbMATHGoogle Scholar
  2. 2.
    Carr R.D., Greenberg H.J., Hart W.E., Konjevod G., Lauer E., Lin H., Morrison T., Phillips C.A.: Robust optimization of contaminant sensor placement for community water systems. Math. Program. 107(1–2), 337–356 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cherkassky B.V.: On implementing the push-relabel method for the maximum flow problem. Algorithmica 19(4), 390–410 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dolan E.D., Moré J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fischetti M.: Facets of two steiner arborescence polyhedra. Math. Program. 51(3), 401–419 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Goemans M., Williamson D.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24(2), 296–317 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Goemans M., Williamson D.: The primal-dual method for approximation algorithms and its application to network design problems. In: Hochbaum, D. (eds) Approximation Algorithms for NP-hard Problems, pp. 144–191. PWS Publishing Company, Boston (1997)Google Scholar
  8. 8.
    Johnson, D.S., Minkoff, M., Phillips, S.: The prize collecting steiner tree problem: theory and practice. In: Proceedings of the 11th symposium on discrete algorithms, pp. 760–769 (2000)Google Scholar
  9. 9.
    Ljubic I., Weiskircher R., Pferschy U., Klau G., Mutzel P., Fischetti M.: An algorithmic framework for the exact solution of the prize-collecting steiner tree problem. Math. Program. Ser. B 105(2–3), 427–449 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lougee-Heimer R.: The common optimization interface for operations research. IBM J. Res. Dev. 47(1), 57–66 (2003)CrossRefGoogle Scholar
  11. 11.
    Margot F., Prodon A., Liebling T.M.: Tree polytope on 2-trees. Math. Program. 63(2), 183–191 (1994)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer and Mathematical Programming Society 2010

Authors and Affiliations

  • Alain Prodon
    • 1
  • Scott DeNegre
    • 2
  • Thomas M. Liebling
    • 1
  1. 1.EPFL-SB-IMA-ROSOLausanneSwitzerland
  2. 2.Industrial and Systems EngineeringLehigh UniversityBethlehemUSA

Personalised recommendations