Mathematical Programming

, Volume 124, Issue 1–2, pp 33–43

# Computable representations for convex hulls of low-dimensional quadratic forms

Full Length Paper Series B

## Abstract

Let $${\mathcal{C}}$$ be the convex hull of points $${{\{{1 \choose x}{1 \choose x}^T \,|\, x\in \mathcal{F}\subset \Re^n\}}}$$. Representing or approximating $${\mathcal{C}}$$ is a fundamental problem for global optimization algorithms based on convex relaxations of products of variables. We show that if n ≤ 4 and $${\mathcal{F}}$$ is a simplex, then $${\mathcal{C}}$$ has a computable representation in terms of matrices X that are doubly nonnegative (positive semidefinite and componentwise nonnegative). We also prove that if n = 2 and $${\mathcal{F}}$$ is a box, then $${\mathcal{C}}$$ has a representation that combines semidefiniteness with constraints on product terms obtained from the reformulation-linearization technique (RLT). The simplex result generalizes known representations for the convex hull of $${{\{(x_1, x_2, x_1x_2)\,|\, x\in\mathcal{F}\}}}$$ when $${\mathcal{F}\subset\Re^2}$$ is a triangle, while the result for box constraints generalizes the well-known fact that in this case the RLT constraints generate the convex hull of $${{\{(x_1, x_2, x_1x_2)\,|\, x\in\mathcal{F}\}}}$$. When n = 3 and $${\mathcal{F}}$$ is a box, we show that a representation for $${\mathcal{C}}$$ can be obtained by utilizing the simplex result for n = 4 in conjunction with a triangulation of the 3-cube.

### Keywords

Quadratic form Convex hull Convex envelope Global optimization Semidefinite programming

### Mathematics Subject Classification (2000)

90C20 90C22 90C26

## Preview

### References

1. 1.
Anstreicher K.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43, 471–484 (2009)
2. 2.
Bomze I.: Branch-and-bound approaches to standard quadratic optimization problems. J. Glob. Optim. 22, 27–37 (2002)
3. 3.
Bomze I., Dür M., de Klerk E., Roos C., Quist A., Terlaky T.: On copositive programming and standard quadratic optimization problems. J. Glob. Optim. 18, 301–320 (2000)
4. 4.
Bomze I., de Klerk E.: Solving standard quadratic optimization problems via linear, semidefinite, and copositive programming. J. Glob. Optim. 24, 163–185 (2002)
5. 5.
Burer S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Prog. 120, 479–495 (2009)
6. 6.
Jach M., Michaels D., Weismantel R.: The convex envelope of (n − 1)-convex functions. SIAM. J. Optim. 19, 1451–1466 (2008)
7. 7.
Kogan N., Berman A.: Characterization of completely positive graphs. Discrete Math. 114, 297–304 (1993)
8. 8.
Linderoth J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Prog. 103, 251–282 (2005)
9. 9.
Motzkin T., Straus E.: Maxima for graphs and a new proof of a theorem of Túran. Can. J. Math. 17, 533–540 (1965)
10. 10.
Pataki G.: On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues. Math. Oper. Res. 23, 339–358 (1998)
11. 11.
Sahinidis N.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8, 201–205 (1996)
12. 12.
Sherali H., Adams W.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer, Dordrecht (1998)Google Scholar
13. 13.
Sherali H., Alameddine A.: A new reformulation-linearization technique for bilinear programming problems. J. Glob. Optim. 2, 379–410 (1992)
14. 14.
Sherali H., Tuncbilek C.: A reformulation-convexification approach for solving nonconvex quadratic programming problems. J. Glob. Optim. 7, 1–31 (1995)
15. 15.
Vandenbussche D., Nemhauser G.: A branch-and-cut algorithm for nonconvex quadratic programming with box constraints. Math. Prog. 102, 559–575 (2005)
16. 16.
Ye Y.: Approximating quadratic programming with bound and quadratic constraints. Math. Prog. 84, 219–226 (1999)