Mathematical Programming

, Volume 132, Issue 1–2, pp 1–30 | Cite as

Local and superlinear convergence of a primal-dual interior point method for nonlinear semidefinite programming

Full Length Paper Series A

Abstract

In this paper, we consider a primal-dual interior point method for solving nonlinear semidefinite programming problems. We propose primal-dual interior point methods based on the unscaled and scaled Newton methods, which correspond to the AHO, HRVW/KSH/M and NT search directions in linear SDP problems. We analyze local behavior of our proposed methods and show their local and superlinear convergence properties.

Keywords

Nonlinear semidefinite programming Primal-dual interior point method Local and superlinear convergence 

Mathematics Subject Classification (2000)

90C22 90C51 49M15 49M37 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alizadeh F., Haeberly J.A., Overton M.L.: Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results. SIAM J. Optim. 8, 746–768 (1998)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bonnans J.F., Shapiro A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)MATHGoogle Scholar
  3. 3.
    Bonnans, J.F., Ramirez, C.H.: Strong regularity of semidefinite programming problems. Technical Report, CMM-DIM B-05/06-137, Department of Mathematical Engineering, Universidad de Chile, (2005)Google Scholar
  4. 4.
    Boyd S., Vandenberghe L.: Convex Optimization. Cambridge University Press, Cambridge (2004)MATHGoogle Scholar
  5. 5.
    Correa R., Ramirez C.H.: A global algorithm for nonlinear semidefinite programming. SIAM J. Optim. 15, 303–318 (2004)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Fares B., Apkarian P., Noll D.: An augmented Lagrangian method for a class of LMI-constrained problems in robust control theory. Int. J. Control 74, 348–360 (2001)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Fares B., Noll D., Apkarian P.: Robust control via sequential semidefinite programming. SIAM J. Control Optim. 40, 1791–1820 (2002)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Freund R.W., Jarre F., Vogelbusch C.H.: Nonlinear semidefinite programming: sensitivity, convergence, and an application in passive reduced-order modeling. Math. Program. 109, 581–611 (2007)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Helmberg C., Rendl F., Vanderbei R.J., Wolkowicz H.: An interior-point method for semidefinite programming. SIAM J. Optim. 6, 342–361 (1996)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Kanzow C., Nagel C., Kato H., Fukushima M.: Successive linearization methods for nonlinear semidefinite programs. Comput. Optim. Appl. 31, 251–273 (2005)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Kocvara M., Stingl M.: PENNON : A code for convex nonlinear and semidefinite programming. Optim. Methods Softw. 18, 317–333 (2003)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Kojima M., Shida M., Shindoh S.: Local convergence of predictor-corrector infeasible-interior-point algorithms for SDPs and SDLCPs. Math. Program. 80, 129–160 (1998)MathSciNetMATHGoogle Scholar
  13. 13.
    Kojima M., Shida M., Shindoh S.: A predictor-corrector interior-point algorithm for the semidefinite linear complementarity problem using the Alizadeh-Haeberly-Overton search direction. SIAM J. Optim. 9, 444–465 (1999)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Kojima M., Shindoh S., Hara S.: Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM J. Optim. 7, 86–125 (1997)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Luo Z., Sturm J.F., Zhang S.: Superlinear convergence of a symmetric primal-dual path following algorithm for semidefinite programming. SIAM J. Optim. 8, 59–81 (1998)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Monteiro R.D.C.: Primal-dual path-following algorithms for semidefinite programming. SIAM J. Optim. 7, 663–678 (1997)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Nesterov Y.E., Todd M.J.: Self-scaled barriers and interior-point methods for convex programming. Math. Oper. Res. 22, 1–42 (1997)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Nesterov Y.E., Todd M.J.: Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim. 8, 324–364 (1998)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Potra F.A., Sheng R.: Superlinear convergence of interior-point algorithms for semidefinite programming. J. Optim. Theor. Appl. 99, 103–119 (1998)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Shapiro A.: First and second order analysis of nonlinear semidefinite programs. Math. Program. 77, 301–320 (1997)MATHGoogle Scholar
  21. 21.
    Shapiro, A.: Duality, optimality conditions, and perturbation analysis. In: Handbook of Semidefinite Programming, Theory, Algorithms and Applications, pp. 68–92 (2000)Google Scholar
  22. 22.
    Stingl, M.: On the solution of nonlinear semidefinite programs by augmented Lagrangian methods, Doctoral Thesis, Friedrich-Alexander-University of Erlangen-Nuremberg (2005)Google Scholar
  23. 23.
    Sun D.: The strong second-order sufficient condition and constraint nondegeneracy in nonlinear semidefinite programming and their implications. Math. Oper. Res. 31, 761–776 (2006)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Sun D., Sun J., Zhang L.: The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming. Math. Program. 114, 349–391 (2008)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Todd M.J.: Semidefinite optimization. Acta Numerica 10, 515–560 (2001)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Todd M.J., Toh K.C., Tütüncü R.H.: On the Nesterov-Todd direction in semidefinite programming. SIAM J. Optim. 8, 769–796 (1998)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Wilkinson J.H.: The Algebraic Eigenvalue Problem. Oxford University Press, Oxford (1965)MATHGoogle Scholar
  28. 28.
    Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds): Handbook of Semidefinite Programming: Theory, Algorithms and Applications, Kluwer International Series in Operations Research and Management Science. Kluwer, Boston (2000)Google Scholar
  29. 29.
    Yamashita, H., Yabe, H., Harada, K.: A primal-dual interior point method for nonlinear semidefinite programming, Technical Report, Mathematical Systems Inc., September 2006 (revised November 2008)Google Scholar

Copyright information

© Springer and Mathematical Programming Society 2010

Authors and Affiliations

  1. 1.Mathematical Systems Inc.TokyoJapan
  2. 2.Department of Mathematical Information Science, Faculty of ScienceTokyo University of ScienceTokyoJapan

Personalised recommendations