Advertisement

Mathematical Programming

, Volume 131, Issue 1–2, pp 131–161 | Cite as

Multicriteria optimization with a multiobjective golden section line search

  • Douglas A. G. Vieira
  • Ricardo H. C. TakahashiEmail author
  • Rodney R. Saldanha
Full Length Paper Series A

Abstract

This work presents an algorithm for multiobjective optimization that is structured as: (i) a descent direction is calculated, within the cone of descent and feasible directions, and (ii) a multiobjective line search is conducted over such direction, with a new multiobjective golden section segment partitioning scheme that directly finds line-constrained efficient points that dominate the current one. This multiobjective line search procedure exploits the structure of the line-constrained efficient set, presenting a faster compression rate of the search segment than single-objective golden section line search. The proposed multiobjective optimization algorithm converges to points that satisfy the Kuhn-Tucker first-order necessary conditions for efficiency (the Pareto-critical points). Numerical results on two antenna design problems support the conclusion that the proposed method can solve robustly difficult nonlinear multiobjective problems defined in terms of computationally expensive black-box objective functions.

Keywords

Multiobjective optimization Feasible directions Line search Golden section 

Mathematics Subject Classification (2000)

90C29 90C30 65K05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benson H.P.: Existence of efficient solutions for vector maximization problems. J. Optim. Theory Appl. 26(4), 569–580 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bosman, P.A.N., de Jong, E.D.: Exploiting gradient information in numerical multi-objective evolutionary optimization. In: Proceedings of the 2005 Genetic and Evolutionary Computation Conference (GECCO’05), pp. 755–762. ACM, Washington June (2005)Google Scholar
  3. 3.
    Chankong V., Haimes Y.Y.: On the characterization of noninferior solutions of the vector optimization problem. Automatica 18(6), 697–707 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Chankong V., Haimes Y.Y.: Multiobjective decision making: theory and methodology. Elsevier, Amsterdam (1983)zbMATHGoogle Scholar
  5. 5.
    Coello Coello C.A., Van Veldhuizen D.A., Lamont G.B.: Evolutionary algorithms for solving multi-objective Problems. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  6. 6.
    Deb K.: Multi-objective optimization using evolutionary algorithms. Wiley, London (2001)zbMATHGoogle Scholar
  7. 7.
    Deb K., Pratap A., Agarwal S., Meyarivan T.: A fast and elitist multiobjective genetic algorithm: NSGA II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  8. 8.
    Dellnitz M., Schutze O., Hestermeyer T.: Covering Pareto sets by multilevel subdivision techniques. J. Optim. Theory Appl. 124(1), 113–136 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Ehrgott M.: Multicriteria optimization, volume 491 of lecture notes in economics and mathematical systems. Springer Verlag, Berlin (2000)Google Scholar
  10. 10.
    Engau A., Wiecek M.M.: Cone characterizations of approximate solutions in real vector optimization. J. Optim. Theory Appl. 134(3), 499–513 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Fliege J.: Gap-free computation of Pareto-points by quadratic scalarizations. Math. Methods Oper. Res. 59, 69–89 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Fliege J., Grana-Drummond L.M., Svaiter B.F.: Newton’s method for multiobjective optimization. SIAM J. Optim. 20(2), 602–626 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Fliege J., Svaiter B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 51, 479–494 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Fonseca, C.M., Fleming, P.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Proceedings of the 5th International Conference: Genetic Algorithms, pp. 416–427. San Mateo (1993)Google Scholar
  15. 15.
    Fonseca C.M., Fleming P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evol. Comput. 7(3), 205–230 (1995)Google Scholar
  16. 16.
    Gould F.J., Tolle J.W.: A necessary and sufficient qualification for constrained optimization. SIAM J. Appl. Math. 20(2), 164–172 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Hillermeier C.: Generalized homotopy approach to multiobjective optimization. J. Optim. Theory Appl. 110(3), 557–583 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Jeyakumar V., Luc D.T.: Nonsmooth vector functions and continuous optimization. Springer, Berlin (2008)zbMATHGoogle Scholar
  19. 19.
    Klamroth K., Tind J., Wiecek M.M.: Unbiased approximation in multicriteria optimization. Math. Methods Oper. Res. 56, 413–437 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Lisboa, A.C., Vieira, D.A.G., Vasconcelos, J.A., Saldanha, R.R., Takahashi, R.H.C.: Multi-objective shape optimization of broad-band reflector antennas using the cone of efficient directions algorithm. IEEE Transactions on Magnetics, pp. 1223–1226 (2006)Google Scholar
  21. 21.
    Lisboa A.C., Vieira D.A.G., Vasconcelos J.A., Saldanha R.R., Takahashi R.H.C.: Monotonically improving Yagi-Uda conflicting specifications using the dominating cone line search method. IEEE Trans. Magn. 45(3), 1494–1497 (2009)CrossRefGoogle Scholar
  22. 22.
    Lohn, J.D., Kraus, W.F., Colombano, S.P. Evolutionary optimization of Yagi-Uda antennas. In Proceedings of the Fourth International Conference on Evolvable Systems, pp. 236–243 (2001)Google Scholar
  23. 23.
    Luenberger D.G.: Linear and nonlinear programming. Addison-Wesley, Reading (1984)zbMATHGoogle Scholar
  24. 24.
    Pareto, V.: Manual of political economy. Augustus M. Kelley, New York (1906). (1971 translation of 1927 Italian edition)Google Scholar
  25. 25.
    Pereyra V.: Fast computation of equispaced Pareto manifolds and Pareto fronts for multiobjective optimization problems. Math. Comput. Simulat. 79(6), 1935–1947 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Ramos R.M., Saldanha R.R., Takahashi R.H.C., Moreira F.J.S.: The real-biased multiobjective genetic algorithm and its application to the design of wire antennas. IEEE Trans. Magn. 39(3), 1329–1332 (2003)CrossRefGoogle Scholar
  27. 27.
    Romero C.: A survey of generalized goal programming (1970–1982). Eur. J. Oper. Res. 25, 183–191 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Schaffler S., Schultz R., Weinzierl K.: Stochastic method for the solution of unconstrained vector optimization problems. J. Optim. Theory Appl. 114(1), 209–222 (2002)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Schütze O., Laumanns M., Coello-Coello C.A., Dellnitz M.l., Talbi E.G.: Convergence of stochastic search algorithms to finite size Pareto set approximations. J. Global Optim. 41, 559–577 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Wanner E.F., Guimaraes F.G., Takahashi R.H.C., Fleming P.J.: Local search with quadratic approximations into memetic algorithms for optimization with multiple criteria. Evol. Comput. 16(2), 185–224 (2008)CrossRefGoogle Scholar
  31. 31.
    Yano H., Sakawa M.: A unified approach for characterizing Pareto optimal solutions of multiobjective optimization problems: the hyperplane method. Eur. J. Oper. Res. 39, 61–70 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Yu P.L.: Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives. J. Optim. Theory Appl. 14, 319–377 (1974)zbMATHCrossRefGoogle Scholar
  33. 33.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. Technical report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich (2001)Google Scholar

Copyright information

© Springer and Mathematical Programming Society 2010

Authors and Affiliations

  • Douglas A. G. Vieira
    • 1
  • Ricardo H. C. Takahashi
    • 2
    Email author
  • Rodney R. Saldanha
    • 1
  1. 1.Departamento de Engenharia ElétricaUniversidade Federal de Minas GeraisMinas GeraisBrazil
  2. 2.Departamento de MatemáticaUniversidade Federal de Minas GeraisMinas GeraisBrazil

Personalised recommendations