Mathematical Programming

, Volume 130, Issue 2, pp 249–294 | Cite as

Branching in branch-and-price: a generic scheme

  • François VanderbeckEmail author
Full Length Paper Series A


Developing a branching scheme that is compatible with the column generation procedure can be challenging. Application specific and generic schemes have been proposed in the literature, but they have their drawbacks. One generic scheme is to implement standard branching in the space of the compact formulation to which the Dantzig-Wolfe reformulation was applied. However, in the presence of multiple identical subsystems, the mapping to the original variable space typically induces symmetries. An alternative, in an application specific context, can be to expand the compact formulation to offer a wider choice of branching variables. Other existing generic schemes for use in branch-and-price imply modifications to the pricing problem. This is a concern because the pricing oracle on which the method relies might become obsolete beyond the root node. This paper presents a generic branching scheme in which the pricing oracle of the root node remains of use after branching (assuming that the pricing oracle can handle bounds on the subproblem variables). The scheme does not require the use of an extended formulation of the original problem. It proceeds by recursively partitioning the subproblem solution set. Branching constraints are enforced in the pricing problem instead of being dualized via Lagrangian relaxation, and the pricing problem is solved by a limited number of calls to the pricing oracle. This generic scheme builds on previously proposed approaches and unifies them. We illustrate its use on the cutting stock and bin packing problems. This is the first branch-and-price algorithm capable of solving such problems to integrality without modifying the subproblem or expanding its variable space.


Integer programming Dantzig–Wolfe reformulation Branch-and-price 

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnhart C., Hane C.A., Vance P.H.: Using branch-and-price-and-cut to solve origin-destination integer multicommodity flow problems. Oper. Res. 48(2), 318–326 (2000)CrossRefGoogle Scholar
  2. 2.
    Barnhart C., Johnson E.L., Nemhauser G.L., Savelsbergh M.W.P., Vance P.H.: Branch-and-price: column generation for huge integer programs. Oper. Res. 46, 316–329 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Belov, G., Letchford, A.N., Uchoa, E.: A node-flow model for the 1D stock cutting: Robust branch-cut-and-price. Tech. report RPEP, vol. 5, no. 7. Universidade Federal Fluminense (2005)Google Scholar
  4. 4.
    Briant O., Lemaréchal C., Meurdesoif Ph., Michel S., Perrot N., Vanderbeck F.: Comparison of bundle and classical column generation. Math. Progr. 113(2), 299–344 (2008)zbMATHCrossRefGoogle Scholar
  5. 5.
    Chabrier, A.: Génération de Colonnes et de Coupes utilisant des sous-problèmes de plus court chemin. Thèse de doctorat, Université d’Angers (2003)Google Scholar
  6. 6.
    Desaulniers, G., Desrosiers, J., Langevin, A., Marcotte, O., Savard, G., Soumis, F., Solomon, M.: GENCOL, a mathematical optimizer. (1990)
  7. 7.
    Eisenbrand F., Shmonin G.: Carathéodory bounds for integer cones. Oper. Res. Lett. 34(5), 564–568 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gendreau, M., Dejaxm, P., Feillet, D., Gueguen, C.: Vehicle routing with time windows and split deliveries, Working Paper (2005)Google Scholar
  9. 9.
    Geoffrion A.: Lagrangian relaxation for integer programming. Math. Prog. St. 2, 82–114 (1974)MathSciNetGoogle Scholar
  10. 10.
    Horowitz E., Sahni S.: Computing partitions with applications to the knapsack problem. J. ACM 21, 277–292 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Ladányi L., Ralphs T.K., Trotter L.E. Jr: Branch, cut, and price: sequential and parallel. In: Jünger, M., Naddef, D. (eds) Computational Combinatorial Optimization, pp. 223–269. Springer, New York (1998)Google Scholar
  12. 12.
    Parker M., Ryan D.M.: A column generation algorithm for brandwidth packing. Telecommun. Syst. 2, 185–195 (1994)CrossRefGoogle Scholar
  13. 13.
    Puchinger, J., Stuckey, P.J., Wallace, M., Brand, S.: From high-level model to branch-and-price solution in G12. CPAIOR 2008, The Fifth International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, vol. 5015 of LNCS, pp. 218–232. Springer, New York (2008)Google Scholar
  14. 14.
    Ryan, D.M., Foster, B.A.: An integer programming approach to scheduling. In: Wren, A. (eds.) Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling, pp. 269–280. North-Holland (1981)Google Scholar
  15. 15.
    Savelsbergh, M.W.P., Nemhauser, G.L.: Functional description of MINTO, a mixed INTeger optimizer. Report COC-91-03A, Georgia Institute of Technology, Atlanta (1993)Google Scholar
  16. 16.
    Thienel, S.: ABACUS—a branch-and-cut system. Ph.D. Thesis, Universität zu Köln (1995)Google Scholar
  17. 17.
    Valério de Carvalho J.: Exact solution of bin packing problems using column generation and branch-and-bound. Ann. Oper. Res 86, 629–659 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Vance P.H.: Branch-and-price algorithms for the one-dimensional cutting stock problem. Comput. Optim. Appl. 9(3), 211–228 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Vanderbeck F.: Computational study of a column generation algorithm for bin packing and cutting stock problems. Math. Prog. 86, 565–594 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Vanderbeck F.: On Dantzig–Wolfe decomposition in integer programming and ways to perform branching in a branch-and-price algorithm. Oper. Res. 48, 111–128 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Vanderbeck F.: Exact algorithm for minimising the number of setups in the one-dimensional cutting stock problem. Oper. Res. 48, 915–926 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Vanderbeck F.: Extending Dantzig’s bound to the bounded multi-class binary knapsack problem. Math. Prog. 94(1), 125–136 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Vanderbeck F.: Implementing mixed integer column generation. In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds) Column Generation, Kluwer, Dordrecht (2005)Google Scholar
  24. 24.
    Vanderbeck, F.: BaPCod—a generic branch-and-price code. depot APP 08-120018-000 IDDN (2008).
  25. 25.
    Vanderbeck F., Savelsbergh M.W.P.: A Generic view of Dantzig–Wolfe decomposition in mixed integer programming. Oper. Res. Let. 34(3), 296–306 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Villeneuve D., Desrosiers J., Lübbecke M.E., Soumis F.: On compact formulations for integer programs solved by column generation. Ann. Oper. Res. 139(1), 375–388 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Xpress-MP: User guide and reference manual, release 18.10. Dash Optim. (2007)Google Scholar

Copyright information

© Springer and Mathematical Programming Society 2010

Authors and Affiliations

  1. 1.University Bordeaux 1 (Institut de Mathématiques) & Inria Bordeaux Sud-OuestTalence CedexFrance

Personalised recommendations