Advertisement

Mathematical Programming

, Volume 128, Issue 1–2, pp 123–148 | Cite as

Modeling hop-constrained and diameter-constrained minimum spanning tree problems as Steiner tree problems over layered graphs

  • Luis Gouveia
  • Luidi Simonetti
  • Eduardo Uchoa
Full Length Paper Series A

Abstract

The hop-constrained minimum spanning tree problem (HMSTP) is an NP-hard problem arising in the design of centralized telecommunication networks with quality of service constraints. We show that the HMSTP is equivalent to a Steiner tree problem (STP) in an appropriate layered graph. We prove that the directed cut model for the STP defined in the layered graph, dominates the best previously known models for the HMSTP. We also show that the Steiner directed cuts in the extended layered graph space can be viewed as being a stronger version of some previously known HMSTP cuts in the original design space. Moreover, we show that these strengthened cuts can be combined and projected into new families of cuts, including facet defining ones, in the original design space. We also adapt the proposed approach to the diameter-constrained minimum spanning tree problem (DMSTP). Computational results with a branch-and-cut algorithm show that the proposed method is significantly better than previously known methods on both problems.

Keywords

Networks/graphs: tree algorithms Integer programming: formulations Cutting planes 

Mathematics Subject Classification (2000)

90C11 Mixed integer programming 90C27 Combinatorial optimization 90C57 Polyhedral combinatorics, branch-and-bound, branch-and-cut 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achuthan N.R., Caccetta L., Caccetta P.A., Geelen J.F.: Computational methods for the diameter restricted minimum weight spanning tree problem. Australas. J. Comb. 10, 51–71 (1994)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Chopra S., Rao M.R.: The Steiner tree problem I: formulations, compositions and extension of facets. Math. Program. 64(2), 209–229 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Dahl G.: The 2-hop spanning tree problem. Oper. Res. Lett. 23, 21–26 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Dahl G.: Notes on polyhedra associated with hop-constrained paths. Oper. Res. Lett. 25, 97–100 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Dahl, G., Flatberg, T., Foldnes, N., Gouveia, L.: The jump formulation for the hop-constrained minimum spanning tree problem. Tech. Rep. CIO 5, University of Lisbon (2004)Google Scholar
  6. 6.
    Dahl G., Gouveia L., Requejo C.: On formulations and methods for the hop-constrained minimum spanning tree problem. In: Pardalos, P., Resende, M. (eds) Handbook of Optimization in Telecommunications., pp. 493–515. Springer, Berlin (2006)CrossRefGoogle Scholar
  7. 7.
    Garey M.R., Johnson D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)zbMATHGoogle Scholar
  8. 8.
    Gouveia L.: Using the Miller–Tucker–Zemlin constraints to formulate a minimal spanning tree problem with hop constraints. Comput. Oper. Res. 22(9), 959–970 (1995)zbMATHCrossRefGoogle Scholar
  9. 9.
    Gouveia L.: Multicommodity flow models for spanning trees with hop constraints. Eur. J. Oper. Res. 95(1), 178–190 (1996)zbMATHCrossRefGoogle Scholar
  10. 10.
    Gouveia L.: Using variable redefinition for computing lower bounds for minimum spanning and Steiner trees with hop constraints. INFORMS J. Comput. 10(2), 180–188 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Gouveia L., Magnanti T.L.: Network flow models for designing diameter-constrained minimum- spanning and Steiner trees. Networks 41(3), 159–173 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gouveia L., Magnanti T.L., Requejo C.: A 2-path approach for odd-diameter-constrained minimum spanning and Steiner trees. Networks 44(4), 254–265 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Gouveia L., Magnanti T.L., Requejo C.: An intersecting tree model for odd-diameter-constrained minimum spanning and Steiner trees. Ann. Oper. Res. 146, 19–39 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Gouveia L., Requejo C.: A new Lagrangian relaxation approach for the hop-constrained minimum spanning tree problem. Eur. J. Oper. Res. 132(3), 539–552 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Gouveia, L., Simonetti, L., Uchoa, E.: Modelling hop-constrained and diameter-constrained minimum spanning tree problems as Steiner tree problems over layered graphs. Tech. Rep. RPEP, vol. 8, no.7, Universidade Federal Fluminense, Engenharia de Produção, Niterói, Brazil (2008)Google Scholar
  16. 16.
    Gruber, M., Raidl, G.R.: A new 0-1 ILP approach for the bounded diameter minimum spanning tree problem. In: Proceedings of the 2nd International Network Optimization Conference, Lisbon, pp. 178–185 (2005)Google Scholar
  17. 17.
    Hwang F., Richards D., Winter P.: The Steiner Tree Problems. Annals of Discrete Mathematics. North-Holland, Amsterdam (1992)Google Scholar
  18. 18.
    Kerivin H., Mahjoub A.R.: Design of survivable networks: a survey. Networks 46(1), 1–21 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Koch T., Martin A.: Solving Steiner tree problems in graphs to optimality. Networks 33, 207–232 (1998)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Maculan N.: The Steiner problem in graphs. Ann. Discret. Math. 31, 185–212 (1987)MathSciNetGoogle Scholar
  21. 21.
    Magnanti T.L., Wolsey L.A.: Optimal trees. In: ~Ball, M. , Magnanti, T.L. , Monma, C., Nemhauser, G. (eds) Network Models, Handbook in Operations Research and Management Science, vol. 7, pp. 503–615. Elsevier, Amsterdam (1995)Google Scholar
  22. 22.
    Manyem, P., Stallmann, M.F.M.: Some approximation results in multicasting. Tech. Rep. TR-96-03, North Carolina State University (1996)Google Scholar
  23. 23.
    Noronha, T.F., Santos, A.C., Ribeiro, C.C.: Constraint programming for the diameter constrained minimum spanning tree problem. In: Proceedings of IV Latin-American Algorithms, Graphs and Optimization Symposium, Electronic Notes in Discrete Mathematics, vol. 30, pp. 93–98. Puerto Varas, Chile (2008)Google Scholar
  24. 24.
    Oliveira, C., Pardalos, P., Resende, M.: Optimization problems in multicast tree construction. In: Handbook of Optimization in Telecommunications, pp. 701–731. Springer, Berlin (2006)Google Scholar
  25. 25.
    Poggide Aragão M., Uchoa E., Werneck R.: Dual heuristics on the exact solution of large Steiner problems. Electron. Notes Discret. Math. 7, 150–153 (2001)CrossRefGoogle Scholar
  26. 26.
    Ribeiro C., Uchoa E., Werneck R.: A hybrid GRASP with perturbations for the Steiner problem in graphs. INFORMS J. Comput. 14, 228–246 (2002)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Santos, A.C., Lucena, A., Ribeiro, C.C.: Solving diameter constrained minimum spanning tree problems in dense graphs. In: Experimental and Efficient Algorithms, Lecture Notes in Computer Science, vol. 3059/2004, pp. 458–467. Springer, Berlin (2004)Google Scholar
  28. 28.
    Takahashi H., Matsuyama A.: An approximate solution for the Steiner problem in graphs. Mathematica Japonica 24, 573–577 (1980)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Uchoa, E.: Algoritmos para problemas de Steiner com aplicações em projeto de circuitos VLSI. Ph.D. thesis, Pontifícia Universidade Católica do Rio de Janeiro (2001)Google Scholar
  30. 30.
    Uchoa E., Fukasawa R., Lysgaard J., Pessoa A., Poggide Aragão M., Andrade D.: Robust branch-cut-and-price for the capacitated minimum spanning tree problem over a large extended formulation. Math. Program. 112(2), 443–472 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Werneck, R.: Problema de Steiner em grafos: algoritmos primais, duais e exatos. Master’s thesis, Pontifícia Universidade Católica do Rio de Janeiro (2001)Google Scholar
  32. 32.
    Wong R.: A dual ascent approach for Steiner tree problems on a directed graph. Math. Program. 28(3), 271–287 (1984)zbMATHCrossRefGoogle Scholar
  33. 33.
    Woolston K.A., Albin S.L.: The design of centralized networks with reliability and availability constraints. Comput. Oper. Res. 15(3), 207–217 (1988)CrossRefGoogle Scholar

Copyright information

© Springer and Mathematical Programming Society 2009

Authors and Affiliations

  1. 1.Faculdade de Ciências da Universidade de LisboaLisbonPortugal
  2. 2.Universidade Federal do Rio de Janeiro, PESC/COPPERio de JaneiroBrazil
  3. 3.Departamento de Engenharia de ProduçãoUniversidade Federal FluminenseNiteróiBrazil

Personalised recommendations