Advertisement

Mathematical Programming

, Volume 128, Issue 1–2, pp 49–72 | Cite as

Modeling disjunctive constraints with a logarithmic number of binary variables and constraints

  • Juan Pablo Vielma
  • George L. Nemhauser
Full Length Paper Series A

Abstract

Many combinatorial constraints over continuous variables such as SOS1 and SOS2 constraints can be interpreted as disjunctive constraints that restrict the variables to lie in the union of a finite number of specially structured polyhedra. Known mixed integer binary formulations for these constraints have a number of binary variables and extra constraints linear in the number of polyhedra. We give sufficient conditions for constructing formulations for these constraints with a number of binary variables and extra constraints logarithmic in the number of polyhedra. Using these conditions we introduce mixed integer binary formulations for SOS1 and SOS2 constraints that have a number of binary variables and extra constraints logarithmic in the number of continuous variables. We also introduce the first mixed integer binary formulations for piecewise linear functions of one and two variables that use a number of binary variables and extra constraints logarithmic in the number of linear pieces of the functions. We prove that the new formulations for piecewise linear functions have favorable tightness properties and present computational results showing that they can significantly outperform other mixed integer binary formulations.

Mathematics Subject Classification (2000)

90C11 90C26 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appleget, J.A., Wood, R.K.: Explicit-constraint branching for solving mixed-integer programs. In: Laguna, M., González, J.L. (eds.) Computing Tools for Modeling, Optimization, and Simulation: Interfaces in Computer Science and Operations Research, Operations Research Computer Science Interfaces Series, vol. 12, pp. 245–261. Kluwer, Dordrecht (2000)Google Scholar
  2. 2.
    Balakrishnan A., Graves S.C.: A composite algorithm for a concave-cost network flow problem. Networks 19, 175–202 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Balas E.: Disjunctive programming. Ann. Discrete Math. 5, 3–51 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Balas E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algebraic Discrete Methods 6, 466–486 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Balas E.: On the convex-hull of the union of certain polyhedra. Oper. Res. Lett. 7, 279–283 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Balas E.: Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl. Math. 89, 3–44 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Balas E.: Projection, lifting and extended formulation in integer and combinatorial optimization. Ann. Oper. Res. 140, 125–161 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Beale E.M.L., Tomlin J.A.: Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables. In: Lawrence, J. (eds) OR 69: Proceedings of the Fifth International Conference on Operational Research, pp. 447–454. Tavistock Publications, London (1970)Google Scholar
  9. 9.
    Blair C.: 2 Rules for deducing valid inequalities for 0–1 problems. SIAM J. Appl. Math. 31, 614–617 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Blair C.: Representation for multiple right-hand sides. Math. Program. 49, 1–5 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Carnicer J.M., Floater M.S.: Piecewise linear interpolants to lagrange and hermite convex scattered data. Numer. Algorithms 13, 345–364 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Christof, T., Loebel, A.: PORTA—POlyhedron Representation Transformation Algorithm, version 1.3. Available at http://www.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/
  13. 13.
    Coppersmith D., Lee J.: Parsimonious binary-encoding in integer programming. Discrete Optim. 2, 190–200 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Croxton K.L., Gendron B., Magnanti T.L.: A comparison of mixed-integer programming models for nonconvex piecewise linear cost minimization problems. Manage. Sci. 49, 1268–1273 (2003)CrossRefGoogle Scholar
  15. 15.
    Dantzig G.B.: Discrete-variable extremum problems. Oper. Res. 5, 266–277 (1957)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dantzig G.B.: On the significance of solving linear-programming problems with some integer variables. Econometrica 28, 30–44 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Dantzig G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)zbMATHGoogle Scholar
  18. 18.
    de Farias I.R. Jr., Johnson E.L., Nemhauser G.L.: Branch-and-cut for combinatorial optimization problems without auxiliary binary variables. Knowl. Eng. Rev. 16, 25–39 (2001)zbMATHGoogle Scholar
  19. 19.
    Ibaraki T.: Integer programming formulation of combinatorial optimization problems. Discrete Math. 16, 39–52 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Jeroslow R.G.: Cutting plane theory: disjunctive methods. Ann. Discrete Math. 1, 293–330 (1977)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Jeroslow R.G.: Representability in mixed integer programming 1: characterization results. Discrete Appl. Math. 17, 223–243 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Jeroslow R.G.: A simplification for some disjunctive formulations. Eur. J. Oper. Res. 36, 116–121 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Jeroslow R.G.: Representability of functions. Discrete Appl. Math. 23, 125–137 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Jeroslow R.G., Lowe J.K.: Modeling with integer variables. Math. Program. Study 22, 167–184 (1984)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Jeroslow R.G., Lowe J.K.: Experimental results on the new techniques for integer programming formulations. J. Oper. Res. Soc. 36, 393–403 (1985)zbMATHGoogle Scholar
  26. 26.
    Keha A.B., de Farias I.R., Nemhauser G.L.: Models for representing piecewise linear cost functions. Oper. Res. Lett. 32, 44–48 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Keha A.B., de Farias I.R., Nemhauser G.L.: A branch-and-cut algorithm without binary variables for nonconvex piecewise linear optimization. Oper. Res. 54, 847–858 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Lee J.: All-different polytopes. J. Comb. Optim. 6, 335–352 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Lee J., Margot F.: On a binary-encoded ilp coloring formulation. INFORMS J. Comput. 19, 406–415 (2007)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lee J., Wilson D.: Polyhedral methods for piecewise-linear functions I: the lambda method. Discrete Appl. Math. 108, 269–285 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Lowe, J.K.: Modelling with Integer Variables. Ph.D. Thesis, Georgia Institute of Technology (1984)Google Scholar
  32. 32.
    Magnanti T.L., Stratila D.: Separable concave optimization approximately equals piecewise linear optimization. In: Bienstock, D., Nemhauser, G.L. (eds) IPCO, Lecture Notes in Computer Science, vol. 3064, pp. 234–243. Springer, Heidelberg (2004)Google Scholar
  33. 33.
    Markowitz H.M., Manne A.S.: On the solution of discrete programming-problems. Econometrica 25, 84–110 (1957)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Martin A., Moller M., Moritz S.: Mixed integer models for the stationary case of gas network optimization. Math. Program. 105, 563–582 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Meyer R.R.: On the existence of optimal solutions to integer and mixed-integer programming problems. Math. Program. 7, 223–235 (1974)zbMATHCrossRefGoogle Scholar
  36. 36.
    Meyer R.R.: Integer and mixed-integer programming models—general properties. J. Optim. Theory Appl. 16, 191–206 (1975)zbMATHCrossRefGoogle Scholar
  37. 37.
    Meyer R.R.: Mixed integer minimization models for piecewise-linear functions of a single variable. Discrete Math. 16, 163–171 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Meyer R.R.: A theoretical and computational comparison of equivalent mixed-integer formulations. Nav. Res. Logist. 28, 115–131 (1981)zbMATHCrossRefGoogle Scholar
  39. 39.
    Padberg M.: Approximating separable nonlinear functions via mixed zero-one programs. Oper. Res. Lett. 27, 1–5 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Sherali H.D.: On mixed-integer zero-one representations for separable lower-semicontinuous piecewise-linear functions. Oper. Res. Lett. 28, 155–160 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Sherali, H.D., Shetty, C.M.: Optimization with Disjunctive Constraints. Lecture Notes in Economics and Mathematical Systems, vol. 181. Springer, Heidelberg (1980)Google Scholar
  42. 42.
    Shields, R.: Personal communication (2007)Google Scholar
  43. 43.
    Todd M.J.: Union jack triangulations. In: Karamardian, S. (eds) Fixed Points: Algorithms and Applications, pp. 315–336. Academic Press, New York (1977)Google Scholar
  44. 44.
    Tomlin J.A.: A suggested extension of special ordered sets to non-separable non-convex programming problems. In: Hansen, P. (eds) Studies on Graphs and Discrete Programming, Annals of Discrete Mathematics, vol. 11, pp. 359–370. North Holland, Amsterdam (1981)CrossRefGoogle Scholar
  45. 45.
    Vielma, J.P., Ahmed, S., Nemhauser, G.L.: Mixed-integer models for nonseparable piecewise linear optimization: unifying framework and extensions. Oper. Res. (to appear) (2009)Google Scholar
  46. 46.
    Vielma J.P., Keha A.B., Nemhauser G.L.: Nonconvex, lower semicontinuous piecewise linear optimization. Discrete Optim. 5, 467–488 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Vielma J.P., Nemhauser G.L.: Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds) IPCO, Lecture Notes in Computer Science, vol. 5035, pp. 199–213. Springer, Hiedelberg (2008)Google Scholar
  48. 48.
    Watters L.J.: Reduction of integer polynomial programming problems to zero-one linear programming problems. Oper. Res. 15, 1171–1174 (1967)CrossRefGoogle Scholar
  49. 49.
    Wilf., H.S.: Combinatorial algorithms—an update, CBMS-NSF regional conference series in applied mathematics, vol. 55. Society for Industrial and Applied Mathematics (1989)Google Scholar
  50. 50.
    Wilson, D.: Polyhedral methods for piecewise-linear functions. Ph.D. Thesis, University of Kentucky (1998)Google Scholar

Copyright information

© Springer and Mathematical Programming Society 2009

Authors and Affiliations

  1. 1.H. Milton Stewart School of Industrial and Systems EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations