Mathematical Programming

, Volume 128, Issue 1–2, pp 49–72

Modeling disjunctive constraints with a logarithmic number of binary variables and constraints

Full Length Paper Series A

Abstract

Many combinatorial constraints over continuous variables such as SOS1 and SOS2 constraints can be interpreted as disjunctive constraints that restrict the variables to lie in the union of a finite number of specially structured polyhedra. Known mixed integer binary formulations for these constraints have a number of binary variables and extra constraints linear in the number of polyhedra. We give sufficient conditions for constructing formulations for these constraints with a number of binary variables and extra constraints logarithmic in the number of polyhedra. Using these conditions we introduce mixed integer binary formulations for SOS1 and SOS2 constraints that have a number of binary variables and extra constraints logarithmic in the number of continuous variables. We also introduce the first mixed integer binary formulations for piecewise linear functions of one and two variables that use a number of binary variables and extra constraints logarithmic in the number of linear pieces of the functions. We prove that the new formulations for piecewise linear functions have favorable tightness properties and present computational results showing that they can significantly outperform other mixed integer binary formulations.

Mathematics Subject Classification (2000)

90C11 90C26 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appleget, J.A., Wood, R.K.: Explicit-constraint branching for solving mixed-integer programs. In: Laguna, M., González, J.L. (eds.) Computing Tools for Modeling, Optimization, and Simulation: Interfaces in Computer Science and Operations Research, Operations Research Computer Science Interfaces Series, vol. 12, pp. 245–261. Kluwer, Dordrecht (2000)Google Scholar
  2. 2.
    Balakrishnan A., Graves S.C.: A composite algorithm for a concave-cost network flow problem. Networks 19, 175–202 (1989)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Balas E.: Disjunctive programming. Ann. Discrete Math. 5, 3–51 (1979)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Balas E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algebraic Discrete Methods 6, 466–486 (1985)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Balas E.: On the convex-hull of the union of certain polyhedra. Oper. Res. Lett. 7, 279–283 (1988)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Balas E.: Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl. Math. 89, 3–44 (1998)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Balas E.: Projection, lifting and extended formulation in integer and combinatorial optimization. Ann. Oper. Res. 140, 125–161 (2005)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Beale E.M.L., Tomlin J.A.: Special facilities in a general mathematical programming system for non-convex problems using ordered sets of variables. In: Lawrence, J. (eds) OR 69: Proceedings of the Fifth International Conference on Operational Research, pp. 447–454. Tavistock Publications, London (1970)Google Scholar
  9. 9.
    Blair C.: 2 Rules for deducing valid inequalities for 0–1 problems. SIAM J. Appl. Math. 31, 614–617 (1976)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Blair C.: Representation for multiple right-hand sides. Math. Program. 49, 1–5 (1990)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Carnicer J.M., Floater M.S.: Piecewise linear interpolants to lagrange and hermite convex scattered data. Numer. Algorithms 13, 345–364 (1996)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Christof, T., Loebel, A.: PORTA—POlyhedron Representation Transformation Algorithm, version 1.3. Available at http://www.iwr.uni-heidelberg.de/groups/comopt/software/PORTA/
  13. 13.
    Coppersmith D., Lee J.: Parsimonious binary-encoding in integer programming. Discrete Optim. 2, 190–200 (2005)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Croxton K.L., Gendron B., Magnanti T.L.: A comparison of mixed-integer programming models for nonconvex piecewise linear cost minimization problems. Manage. Sci. 49, 1268–1273 (2003)CrossRefGoogle Scholar
  15. 15.
    Dantzig G.B.: Discrete-variable extremum problems. Oper. Res. 5, 266–277 (1957)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dantzig G.B.: On the significance of solving linear-programming problems with some integer variables. Econometrica 28, 30–44 (1960)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Dantzig G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)MATHGoogle Scholar
  18. 18.
    de Farias I.R. Jr., Johnson E.L., Nemhauser G.L.: Branch-and-cut for combinatorial optimization problems without auxiliary binary variables. Knowl. Eng. Rev. 16, 25–39 (2001)MATHGoogle Scholar
  19. 19.
    Ibaraki T.: Integer programming formulation of combinatorial optimization problems. Discrete Math. 16, 39–52 (1976)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Jeroslow R.G.: Cutting plane theory: disjunctive methods. Ann. Discrete Math. 1, 293–330 (1977)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Jeroslow R.G.: Representability in mixed integer programming 1: characterization results. Discrete Appl. Math. 17, 223–243 (1987)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Jeroslow R.G.: A simplification for some disjunctive formulations. Eur. J. Oper. Res. 36, 116–121 (1988)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Jeroslow R.G.: Representability of functions. Discrete Appl. Math. 23, 125–137 (1989)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Jeroslow R.G., Lowe J.K.: Modeling with integer variables. Math. Program. Study 22, 167–184 (1984)MathSciNetMATHGoogle Scholar
  25. 25.
    Jeroslow R.G., Lowe J.K.: Experimental results on the new techniques for integer programming formulations. J. Oper. Res. Soc. 36, 393–403 (1985)MATHGoogle Scholar
  26. 26.
    Keha A.B., de Farias I.R., Nemhauser G.L.: Models for representing piecewise linear cost functions. Oper. Res. Lett. 32, 44–48 (2004)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Keha A.B., de Farias I.R., Nemhauser G.L.: A branch-and-cut algorithm without binary variables for nonconvex piecewise linear optimization. Oper. Res. 54, 847–858 (2006)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Lee J.: All-different polytopes. J. Comb. Optim. 6, 335–352 (2002)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Lee J., Margot F.: On a binary-encoded ilp coloring formulation. INFORMS J. Comput. 19, 406–415 (2007)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lee J., Wilson D.: Polyhedral methods for piecewise-linear functions I: the lambda method. Discrete Appl. Math. 108, 269–285 (2001)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Lowe, J.K.: Modelling with Integer Variables. Ph.D. Thesis, Georgia Institute of Technology (1984)Google Scholar
  32. 32.
    Magnanti T.L., Stratila D.: Separable concave optimization approximately equals piecewise linear optimization. In: Bienstock, D., Nemhauser, G.L. (eds) IPCO, Lecture Notes in Computer Science, vol. 3064, pp. 234–243. Springer, Heidelberg (2004)Google Scholar
  33. 33.
    Markowitz H.M., Manne A.S.: On the solution of discrete programming-problems. Econometrica 25, 84–110 (1957)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Martin A., Moller M., Moritz S.: Mixed integer models for the stationary case of gas network optimization. Math. Program. 105, 563–582 (2006)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Meyer R.R.: On the existence of optimal solutions to integer and mixed-integer programming problems. Math. Program. 7, 223–235 (1974)MATHCrossRefGoogle Scholar
  36. 36.
    Meyer R.R.: Integer and mixed-integer programming models—general properties. J. Optim. Theory Appl. 16, 191–206 (1975)MATHCrossRefGoogle Scholar
  37. 37.
    Meyer R.R.: Mixed integer minimization models for piecewise-linear functions of a single variable. Discrete Math. 16, 163–171 (1976)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Meyer R.R.: A theoretical and computational comparison of equivalent mixed-integer formulations. Nav. Res. Logist. 28, 115–131 (1981)MATHCrossRefGoogle Scholar
  39. 39.
    Padberg M.: Approximating separable nonlinear functions via mixed zero-one programs. Oper. Res. Lett. 27, 1–5 (2000)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Sherali H.D.: On mixed-integer zero-one representations for separable lower-semicontinuous piecewise-linear functions. Oper. Res. Lett. 28, 155–160 (2001)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Sherali, H.D., Shetty, C.M.: Optimization with Disjunctive Constraints. Lecture Notes in Economics and Mathematical Systems, vol. 181. Springer, Heidelberg (1980)Google Scholar
  42. 42.
    Shields, R.: Personal communication (2007)Google Scholar
  43. 43.
    Todd M.J.: Union jack triangulations. In: Karamardian, S. (eds) Fixed Points: Algorithms and Applications, pp. 315–336. Academic Press, New York (1977)Google Scholar
  44. 44.
    Tomlin J.A.: A suggested extension of special ordered sets to non-separable non-convex programming problems. In: Hansen, P. (eds) Studies on Graphs and Discrete Programming, Annals of Discrete Mathematics, vol. 11, pp. 359–370. North Holland, Amsterdam (1981)CrossRefGoogle Scholar
  45. 45.
    Vielma, J.P., Ahmed, S., Nemhauser, G.L.: Mixed-integer models for nonseparable piecewise linear optimization: unifying framework and extensions. Oper. Res. (to appear) (2009)Google Scholar
  46. 46.
    Vielma J.P., Keha A.B., Nemhauser G.L.: Nonconvex, lower semicontinuous piecewise linear optimization. Discrete Optim. 5, 467–488 (2008)MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Vielma J.P., Nemhauser G.L.: Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds) IPCO, Lecture Notes in Computer Science, vol. 5035, pp. 199–213. Springer, Hiedelberg (2008)Google Scholar
  48. 48.
    Watters L.J.: Reduction of integer polynomial programming problems to zero-one linear programming problems. Oper. Res. 15, 1171–1174 (1967)CrossRefGoogle Scholar
  49. 49.
    Wilf., H.S.: Combinatorial algorithms—an update, CBMS-NSF regional conference series in applied mathematics, vol. 55. Society for Industrial and Applied Mathematics (1989)Google Scholar
  50. 50.
    Wilson, D.: Polyhedral methods for piecewise-linear functions. Ph.D. Thesis, University of Kentucky (1998)Google Scholar

Copyright information

© Springer and Mathematical Programming Society 2009

Authors and Affiliations

  1. 1.H. Milton Stewart School of Industrial and Systems EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations