Mathematical Programming

, Volume 127, Issue 2, pp 345–370

# A partition-based relaxation for Steiner trees

Full Length Paper Series A

## Abstract

The Steiner tree problem is a classical NP-hard optimization problem with a wide range of practical applications. In an instance of this problem, we are given an undirected graph G = (V, E), a set of terminals $${R\subseteq V}$$ , and non-negative costs c e for all edges $${e \in E}$$ . Any tree that contains all terminals is called a Steiner tree; the goal is to find a minimum-cost Steiner tree. The vertices $${V \backslash R}$$ are called Steiner vertices. The best approximation algorithm known for the Steiner tree problem is a greedy algorithm due to Robins and Zelikovsky (SIAM J Discrete Math 19(1):122–134, 2005); it achieves a performance guarantee of $${1+\frac{\ln 3}{2}\approx 1.55}$$ . The best known linear programming (LP)-based algorithm, on the other hand, is due to Goemans and Bertsimas (Math Program 60:145–166, 1993) and achieves an approximation ratio of 2−2/|R|. In this paper we establish a link between greedy and LP-based approaches by showing that Robins and Zelikovsky’s algorithm can be viewed as an iterated primal-dual algorithm with respect to a novel LP relaxation. The LP used in the first iteration is stronger than the well-known bidirected cut relaxation. An instance is b-quasi-bipartite if each connected component of $${G \backslash R}$$ has at most b vertices. We show that Robins’ and Zelikovsky’s algorithm has an approximation ratio better than $${1+\frac{\ln 3}{2}}$$ for such instances, and we prove that the integrality gap of our LP is between $${\frac{8}{7}}$$ and $${\frac{2b+1}{b+1}}$$ .

## Mathematics Subject Classification (2000)

68W25 68R10 90C27

## Preview

Unable to display preview. Download preview PDF.

## References

1. 1.
Agarwal, A., Charikar, M.: On the advantage of network coding for improving network throughput. In: Proc. IEEE Information Theory Workshop, pp. 105–109 (2004)Google Scholar
2. 2.
Agrawal A., Klein P., Ravi R.: When trees collide: an approximation algorithm for the generalized Steiner problem in networks. SIAM J. Comput. 24, 440–456 (1995)
3. 3.
Aneja Y.P.: An integer linear programming approach to the Steiner problem in graphs. Networks 10, 167–178 (1980)
4. 4.
Berman P., Ramaiyer V.: Improved approximations for the Steiner tree problem. J. Algorithms 17(3), 381–408 (1994)
5. 5.
Borchers A., Du D.: The k-Steiner ratio in graphs. SIAM J. Comput. 26(3), 857–869 (1997)
6. 6.
Chakrabarty, D., Devanur, N.R., Vazirani, V.V.: New geometry-inspired relaxations and algorithms for the metric Steiner tree problem. In: Proc. 13th IPCO, pp. 344–358 (2008)Google Scholar
7. 7.
Chlebík M., Chlebíková J.: The Steiner tree problem on graphs: inapproximability results. Theor. Comput. Sci. 406(3), 207–214 (2008) [Preliminary version appeared in Proc. 8th SWAT. 170–179 (2002)]
8. 8.
Chopra S.: On the spanning tree polyhedron. Oper. Res. Lett. 8, 25–29 (1989)
9. 9.
Chopra S., Rao M.R.: The Steiner tree problem 1: formulations, compositions, and extension of facets. Math. Program. 64, 209–229 (1994)
10. 10.
Chopra S., Rao M.R.: The Steiner tree problem 2: properties and classes of facets. Math. Program. 64, 231–246 (1994)
11. 11.
Didi Biha M., Kerivin H., Mahjoub A.R.: Steiner trees and polyhedra. Discrete Appl. Math. 112(1–3), 101–120 (2001)
12. 12.
Dreyfus S.E., Wagner R.A.: The Steiner problem in graphs. Networks 1, 195–207 (1972)
13. 13.
Edmonds J.: Optimum branchings. J. Res. Nat. Bur. Stand. B 71, 233–240 (1967)
14. 14.
Fulkerson D.R.: Blocking and anti-blocking pairs of polyhedra. Math. Program. 1, 168–194 (1971)
15. 15.
Garey M.R., Johnson D.S.: The rectilinear Steiner tree problem is NP complete. SIAM J. Appl. Math. 32, 826–834 (1977)
16. 16.
Gilbert E.N., Pollak H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16(1), 1–29 (1968)
17. 17.
Goemans M.X.: The Steiner tree polytope and related polyhedra. Math. Program. 63(2), 157–182 (1994)
18. 18.
Goemans M.X., Bertsimas D.: Survivable networks, linear programming relaxations and the parsimonious property. Math. Program. 60, 145–166 (1993)
19. 19.
Goemans M.X., Myung Y.: A catalog of Steiner tree formulations. Networks 23, 19–28 (1993)
20. 20.
Goemans M.X., Williamson D.P.: The primal-dual method for approximation algorithms and its application to network design problems. In: Hochbaum, D.S. (eds) Approximation Algorithms for NP-hard Problems, chapter 4, PWS, Boston (1997)Google Scholar
21. 21.
Gröpl C., Hougardy S., Nierhoff T., Prömel H.J.: Approximation algorithms for the Steiner tree problem in graphs. In: Cheng, X., Du, D. (eds) Steiner trees in industries, pp. 235–279. Kluwer Academic Publishers, Norvell, Massachusetts (2001)Google Scholar
22. 22.
Hougardy, S., Prömel, H.J.: A 1.598 approximation algorithm for the Steiner problem in graphs. In: Proc. 10th SODA, pp. 448–453 (1999)Google Scholar
23. 23.
Jain K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21(1), 39–60 (1998) [Preliminary version appeared in Proc. 39th FOCS. 448–457 (1998)]
24. 24.
Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Plenum Press, NY, (1972)Google Scholar
25. 25.
Karpinski M., Zelikovsky A.: New approximation algorithms for the Steiner tree problems. J. Comb. Optim. 1(1), 47–65 (1997)
26. 26.
Könemann J., Leonardi S., Schäfer G., van Zwam S.H.M.: A group-strategyproof cost sharing mechanism for the Steiner forest game. SIAM J. Comput. 37(5), 1319–1341 (2008) [Preliminary version appeared in Proc. 16th SODA. 612–619 (2005)]
27. 27.
Könemann, J., Pritchard, D.: Uncrossing partitions. Technical Report CORR 2007-11. Department of Combinatorics & Optimization, University of Waterloo (2007)Google Scholar
28. 28.
Könemann, J., Pritchard, D., Wei, Y.: Filtering for the Steiner tree problem. Manuscript (2008)Google Scholar
29. 29.
Korte B., Vygen J.: Combinatorial Optimization. Springer, New York (2008)Google Scholar
30. 30.
Kruskal J.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7, 48–50 (1956)
31. 31.
Polzin, T.: Algorithms for the Steiner Problem in Networks. Ph.D. thesis, Universität des Saarlandes (February 2003)Google Scholar
32. 32.
Polzin, T., Daneshmand, S.V.: Primal-dual approaches to the Steiner problem. In: Proc. 3rd APPROX, pp. 214–225 (2000)Google Scholar
33. 33.
Polzin T., Vahdati Daneshmand S.: A comparison of Steiner tree relaxations. Discrete Appl. Math. 112(1–3), 241–261 (2001)
34. 34.
Polzin T., Vahdati Daneshmand S.: Improved algorithms for the Steiner problem in networks. Discrete Appl. Math. 112(1–3), 263–300 (2001)
35. 35.
Polzin T., Vahdati Daneshmand S.: On Steiner trees and minimum spanning trees in hypergraphs. Oper. Res. Lett. 31(1), 12–20 (2003)
36. 36.
Prömel H.J., Steger A.: A new approximation algorithm for the Steiner tree problem with performance ratio 5/3. J. Algorithms. 36(1), 89–101 (2000) [Preliminary version appeared in Proc. 14th STACS. 559–570 (1997)]
37. 37.
Prömel H.J., Steger A.: The Steiner Tree Problem—A Tour through Graphs, Algorithms, and Complexity. Vieweg Verlag, Braunschweig-Wiesbaden (2002)
38. 38.
Rajagopalan, S., Vazirani, V.V.: On the bidirected cut relaxation for the metric Steiner tree problem. In: Proc. 10th SODA, pp. 742–751 (1999)Google Scholar
39. 39.
Rizzi R.: On Rajagopalan and Vazirani’s 3/2-approximation bound for the Iterated 1-Steiner heuristic. Inf. Process. Lett. 86(6), 335–338 (2003)
40. 40.
Robins G., Zelikovsky A.: Tighter bounds for graph Steiner tree approximation. SIAM J. Discrete Math. 19(1), 122–134 (2005) [Preliminary version appeared in Proc. 11th SODA. 770–779 (2000)]
41. 41.
Skutella, M.: Personal communication (2006)Google Scholar
42. 42.
Vazirani V.: Recent results on approximating the Steiner tree problem and its generalizations. Theoret. Comput. Sci. 235(1), 205–216 (2000)
43. 43.
Vazirani V.V.: Approximation Algorithms. Springer, Heidelberg (2001)Google Scholar
44. 44.
Warme D.: A new exact algorithm for rectilinear Steiner trees. In: Pardalos, P., Du, D.-Z. (eds) Network Design: Connectivity and Facilities Location, pp. 357–395. American Mathematical Society, New York (1997)Google Scholar
45. 45.
Warme, D.: Spanning Trees in Hypergraphs with Applications to Steiner Trees. Ph.D. thesis, University of Virginia (1998)Google Scholar
46. 46.
Wong R.T.: A dual ascent approach for Steiner tree problems on a directed graph. Math. Program. 28, 271–287 (1984)
47. 47.
Zelikovsky, A.: Better approximation bounds for the network and Euclidean Steiner tree problems. Technical Report CS-96-06. University of Virginia, Charlottesville, VA, USA (1996)Google Scholar
48. 48.
Zelikovsky A.Z.: An 11/6-approximation algorithm for the network Steiner problem. Algorithmica 9, 463–470 (1993)