Advertisement

Mathematical Programming

, Volume 126, Issue 1, pp 147–178 | Cite as

Orbital branching

  • James Ostrowski
  • Jeff Linderoth
  • Fabrizio Rossi
  • Stefano Smriglio
FULL LENGTH PAPER Series A

Abstract

We introduce orbital branching, an effective branching method for integer programs containing a great deal of symmetry. The method is based on computing groups of variables that are equivalent with respect to the symmetry remaining in the problem after branching, including symmetry that is not present at the root node. These groups of equivalent variables, called orbits, are used to create a valid partitioning of the feasible region that significantly reduces the effects of symmetry while still allowing a flexible branching rule. We also show how to exploit the symmetries present in the problem to fix variables throughout the branch-and-bound tree. Orbital branching can easily be incorporated into standard integer programming software. Through an empirical study on a test suite of symmetric integer programs, the question as to the most effective orbit on which to base the branching decision is investigated. The resulting method is shown to be quite competitive with a similar method known as isomorphism pruning and significantly better than a state-of-the-art commercial solver on symmetric integer programs.

Keywords

Integer programming Symmetry Branch-and-bound algorithms 

Mathematics Subject Classification (2000)

90C10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achterberg T., Koch T., Martin A.: Branching rules revisited. Oper. Res. Lett. 33, 42–54 (2004)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Barnhart C., Johnson E.L., Nemhauser G.L., Savelsbergh M.W.P., Vance P.H.: Branch and price: column generation for solving huge integer programs. Oper. Res. 46, 316–329 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cameron P.J.: Permutation Groups. London Mathematical Society, London (1999)MATHCrossRefGoogle Scholar
  4. 4.
    Dolan E., Moré J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Foggia, P., Sansone, C., Vento, M.: A preformance comparison of five algorithms for graph isomorphism. In: Proc. 3rd IAPR-TC15 Workshop Graph-Based Representations in Pattern Recognition, pp. 188–199 (2001)Google Scholar
  6. 6.
    Fulkerson D.R., Nemhauser G.L., Trotter L.E.: Two computationally difficult set covering problems that arise in computing the 1-width of incidence matrices of Steiner triples. Math. Program. Study 2, 72–81 (1973)Google Scholar
  7. 7.
    Grove L.C., Benson C.T.: Finite Reflection Groups. Springer, Heidelberg (1985)MATHGoogle Scholar
  8. 8.
    Hamalainen H., Honkala I., Litsyn S., Östergård P.: Football pools—a game for mathematicians. Am. Math. Monthly 102, 579–588 (1995)CrossRefGoogle Scholar
  9. 9.
    Holm S., Sørensen M.: The optimal graph partitioning problem: solution method based on reducing symmetric nature and combinatorial cuts. OR Spectrum 15, 1–8 (1993)MATHGoogle Scholar
  10. 10.
    Kaibel, V., Peinhardt, M., Pfetsch, M.E.: Orbitopal fixing. In: IPCO 2007: The Twelfth Conference on Integer Programming and Combinatorial Optimization, pp. 74–88. Springer, Heidelberg (2007)Google Scholar
  11. 11.
    Kaibel V., Pfetsch M.E.: Packing and partitioning orbitopes. Math. Program. 114, 1–36 (2008)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Linderoth J.T., Savelsbergh M.W.P.: A computational study of search strategies in mixed integer programming. INFORMS J. Comput. 11, 173–187 (1999)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Litsyn S.: An updated table of the best binary codes known. In: Pless, V.S., Huffman, W.C. (eds) Handbook of Coding Theory volume 1, pp. 463–498. Elsevier, Amsterdam (1998)Google Scholar
  14. 14.
    Macambira, E.M., Maculan, N., de Souza, C.C.: Reducing symmetry of the SONET ring assignment problem using hierarchical inequalities. Technical Report ES-636/04, Programa de Engenharia de Sistemas e Computação, Universidade Federal do Rio de Janeiro (2004)Google Scholar
  15. 15.
    Margot F.: Pruning by isomorphism in branch-and-cut. Math. Program. 94, 71–90 (2002)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Margot F.: Exploiting orbits in symmetric ILP. Math. Program. Ser. B 98, 3–21 (2003)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Margot F.: Small covering designs by branch-and-cut. Math. Program. 94, 207–220 (2003)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    McKay B.D.: Nauty User’s Guide (Version 1.5). Australian National University, Canberra (2002)Google Scholar
  19. 19.
    Méndez-Díaz I., Zabala P.: A branch-and-cut algorithm for graph coloring. Discrete Appl. Math. 154(5), 826–847 (2006)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Mills, W.H., Mullin, R.C.: Coverings and packings. In: Contemporary Design Theory: A Collection of Surveys, pp. 371–399. Wiley, New York (1992)Google Scholar
  21. 21.
    Nemhauser G.L., Savelsbergh M.W.P., Sigismondi G.C.: MINTO, a Mixed INTeger Optimizer. Oper. Res. Lett. 15, 47–58 (1994)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. In: IPCO 2007: The Twelfth Conference on Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science, vol. 4517, pp. 104–118. Springer, Heidelberg (2007)Google Scholar
  23. 23.
    Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Constraint orbital branching. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008: The Thirteenth Conference on Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science, vol. 5035, pp. 225–239 (2008)Google Scholar
  24. 24.
    Rotman J.J.: An Introduction to the Theory of Groups, 4th edn. Springer, Heidelberg (1994)Google Scholar
  25. 25.
    Sewell E.C.: A branch-and-bound algorithm for the stability number of a sparse graph. INFORMS J. Comput. 10, 438–447 (1998)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Sherali H.D., Smith J.C.: Improving zero-one model representations via symmetry considerations. Manage. Sci. 47(10), 1396–1407 (2001)CrossRefGoogle Scholar

Copyright information

© Springer and Mathematical Programming Society 2009

Authors and Affiliations

  • James Ostrowski
    • 1
  • Jeff Linderoth
    • 2
  • Fabrizio Rossi
    • 3
  • Stefano Smriglio
    • 3
  1. 1.Department of Industrial and Systems EngineeringLehigh UniversityBethlehemUSA
  2. 2.Department of Industrial and Systems EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Dipartimento di InformaticaUniversità di L’AquilaL’AquilaItaly

Personalised recommendations