Mathematical Programming

, Volume 122, Issue 1, pp 1–20 | Cite as

Conic mixed-integer rounding cuts



A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic optimization are modeled using conic constraints. Here we study mixed-integer sets defined by second-order conic constraints. We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures of second-order conic sets. These cuts can be readily incorporated in branch-and-bound algorithms that solve either second-order conic programming or linear programming relaxations of conic integer programs at the nodes of the branch-and-bound tree. Central to our approach is a reformulation of the second-order conic constraints with polyhedral second-order conic constraints in a higher dimensional space. In this representation the cuts we develop are linear, even though they are nonlinear in the original space of variables. This feature leads to a computationally efficient implementation of nonlinear cuts for conic mixed-integer programming. The reformulation also allows the use of polyhedral methods for conic integer programming. We report computational results on solving unstructured second-order conic mixed-integer problems as well as mean–variance capital budgeting problems and least-squares estimation problems with binary inputs. Our computational experiments show that conic mixed-integer rounding cuts are very effective in reducing the integrality gap of continuous relaxations of conic mixed-integer programs and, hence, improving their solvability.


Conic programming Integer programming Mixed-integer rounding Branch-and-cut algorithms 

Mathematics Subject Classification (2000)

90C11 90C25 90C57 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abhishek, K., Leyffer, S., Linderoth, J.T.: FilMINT: An outer-approximation-based solver for nonlinear mixed integer programs. Preprint ANL/MCS-P1374-0906, Argonne National Laboratory, Mathematics and Computer Science Division, September 2006Google Scholar
  2. 2.
    Alizadeh F.: Interior point methods in semidefinite programming and applications to combinatorial optimization. SIAM J. Optim. 5, 13–51 (1995)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alizadeh F., Goldfarb D.: Second-order cone programming. Math. Program. 95, 3–51 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Atamtürk, A., Narayanan, V.: Lifting for conic mixed-integer programming. Technical Report BCOL.07.04, IEOR, University of California-Berkeley, October 2007Google Scholar
  5. 5.
    Balas E.: Disjunctive Programming. Ann. Discrete Math. 5, 3–51 (1979)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Balas E., Ceria S., Cornuéjols G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. 58, 295–324 (1993)CrossRefGoogle Scholar
  7. 7.
    Baum S., Carlson R.C., Jucker J.V.: Some problems in applying the continuous portfolio selection model to the discrete capital budgeting problem. J. Financ. Quant. Anal. 13, 333–344 (1978)CrossRefGoogle Scholar
  8. 8.
    Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. MPS-SIAM Series on Optimization. SIAM, Philadelphia, 2001Google Scholar
  9. 9.
    Benson, S.J., Ye, Y.: DSDP5: Software for semidefinite programming. Technical Report ANL/MCS-P1289-0905, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, September 2005. ACM Transactions on Mathematical Software (submitted)Google Scholar
  10. 10.
    Bonami P., Biegler L.T., Conn A.R., Cornuéjols G., Grossmann I.E., Laird C.D., Lee J., Lodi A., Margot F., Sawaya N., Wächter A.: An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim. 5, 186–204 (2008)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Borchers B.: CSDP, a C library for semidefinite programing. Optim. Methods Softw. 11, 613–623 (1999)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Boyd S., Vandenberghe L.: Convex Optimization. Cambridge University Press, Cambridge (2004)MATHGoogle Scholar
  13. 13.
    Çezik M.T., Iyengar G.: Cuts for mixed 0–1 conic programming. Math. Program. 104, 179–202 (2005)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Goemans M.X.: Semidefinite programming in combinatorial optimization. Math. Program. 79, 143–161 (1997)MathSciNetGoogle Scholar
  15. 15.
    Goemans M.X., Williamson D.P.: Improved approximation algorithms for maximum cut and satisfyibility problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Gomory, R.E.: An algorithm for the mixed integer problem. Technical Report RM-2597, The Rand Corporation (1960)Google Scholar
  17. 17.
    Kim S., Kojima M., Yamashita M.: Second order cone programming relaxation of a positive semidefinite constraint. Optim. Methods Softw. 18, 535–451 (2003)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kojima M., Tuncel L.: Cones of matrices and successive convex relaxations of nonconvex sets. SIAM J. Optim. 10, 750–778 (2000)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lasserre, J.B.: An explicit exact SDP relaxation for nonlinear 0–1 programs. In: Aardal, K., Gerards, A.M.H. (eds.) Lecture Notes in Computer Science, vol. 2081, pp. 293–303 (2001)Google Scholar
  20. 20.
    Lobo M., Vandenberghe L., Boyd S., Lebret H.: Applications of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lovász L., Schrijver A.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optim. 1, 166–190 (1991)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Luo J., Pattipati K.R., Willett P., Levchuk G.M.: Optimal and suboptimal any-time algorithms for cdma multiuser detection based on branch and bound. IEEE Trans. Commun. 52, 632–642 (2004)CrossRefGoogle Scholar
  23. 23.
    Luo Z.-Q.: Applications of convex optimization in signal processing and digital communication. Math. Program. 97, 117–207 (2003)CrossRefGoogle Scholar
  24. 24.
    Marchand H., Wolsey L.A.: Aggregation and mixed integer rounding to solve MIPs. Oper. Res. 49, 363–371 (2001)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    McBride R.D.: Finding the integer efficient frontier for quadratic capital budgeting problems. J. Financ. Quant. Anal. 16, 247–253 (1981)CrossRefGoogle Scholar
  26. 26.
    Mobasher A., Taherzadeh M., Khandani A.K.: A near-maximum likelihood decoding algorithm for MIMO systems based on semi-definite programming. IEEE Trans. Inform. Theory 53, 3869–3886 (2007)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Nemhauser G.L., Wolsey L.A.: Integer and Combinatorial Optimization. John Wiley and Sons, New York (1988)MATHGoogle Scholar
  28. 28.
    Nemhauser G.L., Wolsey L.A.: A recursive procedure for generating all cuts for 0–1 mixed integer programs. Math. Program. 46, 379–390 (1990)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Nesterov, Y., Nemirovski, A.: A general approach to polynomial-time algorithm design for convex programming. Technical report, Center. Econ. Math. Inst, USSR Acad. Sci., Moskow, USSR (1988)Google Scholar
  30. 30.
    Nesterov, Y., Nemirovski, A.: Self-concordant functions and polynomial time methods in convex programming. Technical report, Center. Econ. Math. Inst, USSR Acad. Sci., Moskow, USSR (1990)Google Scholar
  31. 31.
    Nesterov, Y., Nemirovski, A.: Conic formulation of a convex programming problem and duality. Technical report, Center. Econ. Math. Inst, USSR Acad. Sci., Moskow, USSR (1991)Google Scholar
  32. 32.
    Nesterov Y., Nemirovski A.: Interior-Point Polynomial Algorithms for Convex Programming. SIAM, Philedelphia (1993)Google Scholar
  33. 33.
    Schrijver A.: Theory of Linear and Integer Programming. John Wiley and Sons, Chichester (1987)Google Scholar
  34. 34.
    Sherali H.D., Adams W.P.: Hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3, 411–430 (1990)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Sherali, H.D., Shetti, C.: Optimization with disjunctive constraints, vol. 181 of Lectures on Econ. Math. Systems. Springer Verlag, Berlin, Heidelberg, New York (1980)Google Scholar
  36. 36.
    Sherali H.D., Tunçbilek C.H.: A reformulation-convexification approach for solving nonconvex quadratic programming problems. J. Global Optim. 7, 1–31 (1995)MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Stubbs R., Mehrotra S.: A branch-and-cut methods for 0–1 mixed convex programming. Math. Program. 86, 515–532 (1999)MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Stubbs R., Mehrotra S.: Generating convex polynomial inequalities for mixed 0-–1 programs. J. Global Optim. 24, 311–332 (2002)MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Sturm J.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 625–653 (1999)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Tawarmalani M., Sahinidis N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Tawarmalani M., Sahinidis N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3—a Matlab software package for semidefinite programming. Optimization Methods and Software, vol. 11/12, pp. 545–581 (1999)Google Scholar
  43. 43.
    Vielma, J.P., Ahmed, S., Nemhauser, G.L.: A lifted linear programming branch-and-bound algorithm for mixed integer conic quadratic programs. Manuscript, Georgia Institute of Technology (2007)Google Scholar
  44. 44.
    Weingartner H.M.: Capital budgeting of interrelated projects: survey and synthesis. Manage. Sci. 12, 485–516 (1966)CrossRefGoogle Scholar
  45. 45.
    Yamashita M., Fujisawa K., Kojima M.: Implementation and evaluation of SDPA 6.0 (SemiDefinite Programming Algorithm 6.0). Optim. Methods Softw. 18, 491–505 (2003)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Industrial Engineering and Operations ResearchUniversity of CaliforniaBerkeleyUSA

Personalised recommendations