Advertisement

Mathematical Programming

, 121:307 | Cite as

Solving Max-Cut to optimality by intersecting semidefinite and polyhedral relaxations

  • Franz Rendl
  • Giovanni Rinaldi
  • Angelika WiegeleEmail author
FULL LENGTH PAPER Series A

Abstract

We present a method for finding exact solutions of Max-Cut, the problem of finding a cut of maximum weight in a weighted graph. We use a Branch-and-Bound setting that applies a dynamic version of the bundle method as bounding procedure. This approach uses Lagrangian duality to obtain a “nearly optimal” solution of the basic semidefinite Max-Cut relaxation, strengthened by triangle inequalities. The expensive part of our bounding procedure is solving the basic semidefinite relaxation of the Max-Cut problem, which has to be done several times during the bounding process. We review other solution approaches and compare the numerical results with our method. We also extend our experiments to instances of unconstrained quadratic 0–1 optimization and to instances of the graph equipartition problem. The experiments show that our method nearly always outperforms all other approaches. In particular, for dense graphs, where linear programming-based methods fail, our method performs very well. Exact solutions are obtained in a reasonable time for any instance of size up to n = 100, independent of the density. For some problems of special structure we can solve even larger problem classes. We could prove optimality for several problems of the literature where, to the best of our knowledge, no other method is able to do so.

Keywords

Maximum cut Cut polytope Semidefinite programming Unconstrained binary quadratic optimization 

Mathematics Subject Classification (2000)

90C20 90C22 90C27 

References

  1. 1.
    Achterberg, T.: Constraint integer programming. PhD thesis, Technische Universität Berlin. http://opus.kobv.de/tuberlin/volltexte/2007/1611/ (2007)
  2. 2.
    Achterberg T., Koch T., Martin A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Armbruster, M.: Branch-and-Cut for a semidefinite relaxation of the minimum bisection problem. PhD thesis, University of Technology Chemnitz (2007)Google Scholar
  4. 4.
    Barahona F., Ladányi L.: Branch and cut based on the volume algorithm: Steiner trees in graphs and max-cut. RAIRO Oper. Res. 40(1), 53–73 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Barahona F., Mahjoub A.R.: On the cut polytope. Math. Program. 36(2), 157–173 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Barahona F., Jünger M., Reinelt G.: Experiments in quadratic 0–1 programming. Math. Program. 44(2, (Ser. A)), 127–137 (1989)zbMATHCrossRefGoogle Scholar
  7. 7.
    Beasley J.E.: Or-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11), 1069–1072 (1990)CrossRefGoogle Scholar
  8. 8.
    Beasley, J.E.: Or-library. http://people.brunel.ac.uk/~mastjjb/jeb/info.html (1990)
  9. 9.
    Beasley, J.E.: Heuristic algorithms for the unconstrained binary quadratic programming problem. Technical report, The Management School, Imperial College, London SW7 2AZ, England (1998)Google Scholar
  10. 10.
    Benson, S.J., Ye, Y., Zhang, X.: Solving large-scale sparse semidefinite programs for combinatorial optimization. SIAM J. Optim. 10(2), 443–461 (2000, electronic)Google Scholar
  11. 11.
    Billionnet A., Elloumi S.: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem. Math. Program. 109(1, Ser. A), 55–68 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Boros, E., Hammer, P.L., Tavares, G.: The pseudo-boolean optimization. http://rutcor.rutgers.edu/~pbo/ (2005)
  13. 13.
    Boros E., Hammer P.L., Sun R., Tavares G.: A max-flow approach to improved lower bounds for quadratic unconstrained binary optimization (QUBO). Discrete Optim. 5(2), 501–529 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Burer, S., Monteiro, R.D., Zhang, Y.: Rank-two relaxation heuristics for max-cut and other binary quadratic programs. SIAM J. Optim. 12(2), 503–521 (2001/2002, electronic)Google Scholar
  15. 15.
    De Simone C., Diehl M., Jünger M., Mutzel P., Reinelt G., Rinaldi G.: Exact ground states of Ising spin glasses: new experimental results with a branch-and-cut algorithm. J. Stat. Phys. 80(1–2), 487–496 (1995)zbMATHCrossRefGoogle Scholar
  16. 16.
    Delorme C., Poljak S.: Laplacian eigenvalues and the maximum cut problem. Math. Program. 62(3, Ser. A), 557–574 (1993)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Deza M.M., Laurent M.: Geometry of Cuts and Metrics. In: Algorithms and Combinatorics, vol. 15. Springer, Berlin (1997)Google Scholar
  18. 18.
    Elf, M., Gutwenger, C., Jünger, M., Rinaldi, G.: Branch-and-Cut Algorithms for Combinatorial Optimization and Their Implementation in ABACUS. In: Lecture Notes in Computer Science, vol. 2241, pp. 157–222. Springer, Heidelberg (2001)Google Scholar
  19. 19.
    Fischer I., Gruber G., Rendl F., Sotirov R.: Computational experience with a bundle approach for semidefinite cutting plane relaxations of Max-Cut and equipartition. Math. Program. 105(2–3, Ser. B), 451–469 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Frangioni A., Lodi A., Rinaldi G.: New approaches for optimizing over the semimetric polytope. Math. Program. 104(2–3, Ser. B), 375–388 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Glover F., Kochenberger G., Alidaee B.: Adaptative memory tabu search for binary quadratic programs. Manage. Sci. 44(3), 336–345 (1998)zbMATHCrossRefGoogle Scholar
  22. 22.
    Goemans, M.X., Williamson, D.P.: .878-approximation algorithms for max cut and max 2sat. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing, pp. 422–431. Montreal, Quebec, Canada (1994)Google Scholar
  23. 23.
    Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42(6), 1115–1145 (1995, preliminary version see [22]Google Scholar
  24. 24.
    Hansen P.: Methods of nonlinear 0–1 programming. Ann. Discrete Math. 5, 53–70 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Helmberg, C.: Fixing variables in semidefinite relaxations. SIAM J. Matrix Anal. Appl. 21(3), 952–969 (2000, electronic)Google Scholar
  26. 26.
    Helmberg, C.: A cutting plane algorithm for large scale semidefinite relaxations. In: The Sharpest Cut, MPS/SIAM Ser. Optim., pp. 233–256. SIAM, Philadelphia, PA (2004)Google Scholar
  27. 27.
    Helmberg C., Rendl F.: Solving quadratic (0,1)-problems by semidefinite programs and cutting planes. Math. Program. 82(3, Ser. A), 291–315 (1998)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Helmberg C., Rendl F., Vanderbei R.J., Wolkowicz H.: An interior-point method for semidefinite programming. SIAM J. Optim. 6(2), 342–361 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Johnson D.S., Aragon C.R., McGeoch L.A., Schevon C.: Optimization by simulated annealing: an experimental evaluation. part i, graph partitioning. Oper. Res. 37(6), 865–892 (1989)zbMATHCrossRefGoogle Scholar
  30. 30.
    Jünger, M., Reinelt, G., Rinaldi, G.: Lifting and separation procedures for the cut polytope. Technical report, Universität zu Köln (2006, in preparation)Google Scholar
  31. 31.
    Karisch, S.E., Rendl, F.: Semidefinite programming and graph equipartition. In: Topics in semidefinite and interior-point methods (Toronto, ON, 1996). In: Fields Inst. Commun., vol. 18, pp. 77–95. American Mathematical Society, Providence (1998)Google Scholar
  32. 32.
    Kim S., Kojima M.: Second order cone programming relaxation of nonconvex quadratic optimization problems. Optim. Methods Softw. 15(3-4), 201–224 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Laurent M.: The max-cut problem. In: Dell’Amico, M., Maffioli, F., Martello, S.(eds) Annotated Bibliographies in Combinatorial Optimization, pp. 241–259. Wiley, Chichester (1997)Google Scholar
  34. 34.
    Liers, F.: Contributions to determining exact ground-states of Ising spin-glasses and to their physics. PhD thesis, Universität zu Köln (2004)Google Scholar
  35. 35.
    Liers F., Jünger M., Reinelt G., Rinaldi G.: Computing exact ground states of hard Ising spin glass problems by branch-and-cut. In: Hartmann, A., Rieger, H.(eds) New Optimization Algorithms in Physics, pp. 47–68. Wiley, London (2004)CrossRefGoogle Scholar
  36. 36.
    Muramatsu M., Suzuki T.: A new second-order cone programming relaxation for MAX-CUT problems. J. Oper. Res. Soc. Jpn 46(2), 164–177 (2003)zbMATHMathSciNetGoogle Scholar
  37. 37.
    Pardalos P.M., Rodgers G.P.: Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45(2), 131–144 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Pardalos P.M., Rodgers G.P.: Parallel branch and bound algorithms for quadratic zero-one programs on the hypercube architecture. Ann. Oper. Res. 22(1–4), 271–292 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Poljak S., Rendl F.: Solving the max-cut problem using eigenvalues. Discrete Appl. Math. 62(1–3), 249–278 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Poljak S., Rendl F.: Nonpolyhedral relaxations of graph-bisection problems. SIAM J. Optim. 5(3), 467–487 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Rendl F.: Semidefinite programming and combinatorial optimization. Appl. Numer. Math. 29(3), 255–281 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Rendl, F., Rinaldi, G., Wiegele, A.: A branch and bound algorithm for Max-Cut based on combining semidefinite and polyhedral relaxations. In: Integer programming and combinatorial optimization. Lecture Notes in Computer Science, vol. 4513, pp. 295–309. Springer, Berlin (2007)Google Scholar
  43. 43.
  44. 44.
    Wiegele, A.: Nonlinear optimization techniques applied to combinatorial optimization problems. PhD thesis, Alpen-Adria-Universität Klagenfurt (2006)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Franz Rendl
    • 1
  • Giovanni Rinaldi
    • 2
  • Angelika Wiegele
    • 1
    Email author
  1. 1.Alpen-Adria-Universität Klagenfurt, Institut für MathematikKlagenfurtAustria
  2. 2.Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti” del CNRRomeItaly

Personalised recommendations