Mathematical Programming

, Volume 119, Issue 1, pp 169–194 | Cite as

On the one-commodity pickup-and-delivery traveling salesman problem with stochastic demands

  • François Louveaux
  • Juan-José Salazar-González
FULL LENGTH PAPER

Abstract

This paper studies how to set the vehicle capacity for traveling Salesman Problems where some of the customer demands are stochastic. The analyses are done for the one-commodity pickup-and-delivery TSP, as this problem also includes the setting of the initial load. The paper first considers feasibility issues. This includes finding the smallest vehicle capacity and some initial load such that a given tour is feasible for all scenarios. Different variants are considered as a function of the time when information becomes available. The paper then analyzes the case where some penalties are paid for routing a tour unable to handle customer demands. Various types of penalties are considered. The paper studies properties of the minimal expected penalty of a given tour, which are then used to provide approaches to find near-optimal tours. Computational results are presented.

Mathematics Subject Classification (2000)

90C15 90C27 90C90 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anily S. and Bramel J. (1999). Approximation algorithms for the capacitated traveling salesman problem with pickups and deliveries. Naval Res. Logis. 46: 654–670 MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Beraldi P., Ghiani G., Laporte G. and Musmanno R. (2005). Efficient neighbourhood search for the probabilistic pickup and delivery travelling salesman problem. Networks 46: 195–198 CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bertsimas D., Jaillet P. and Odoni A. (1990). A priori optimization. Oper. Res. 38(6): 1019–1033 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bertsimas D. and Sim M. (2003). Robust discrete Optimization and network flows. Math. Program. B 98: 49–71 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chalasani P. and Motwani R. (1999). Approximating capacitated routing and delivery problems. SIAM J. Comput. 28: 2133–2149 MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hernández-Pérez, H., Salazar-González, J.J.: The multi-commodity Travelling Salesman Problem with Pickups and Deliveries, working paper, University of La Laguna (2004)Google Scholar
  7. 7.
    Hernández-Pérez H. and Salazar-González J.J. (2004). A branch-and-cut algorithm for a traveling salesman problem with pickup and delivery. Discrete Appl. Math. 145: 126–139 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hernández-Pérez H. and Salazar-González J.J. (2004). Heuristics for the one-commodity pickup-and-delivery traveling salesman problem. Transportation Sci. 38(2): 245–255 CrossRefGoogle Scholar
  9. 9.
    Hernández-Pérez H. and Salazar-González J.J. (2007). The one-commodity pickup-and-delivery traveling salesman problem: inequalities and algorithms. Networks 50(4): 258–272 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hjorring C. and Holt J. (1999). New optimality cuts for a single-vehicle stochastic routing problem. Ann. Oper. Res. 86: 569–584 MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Jaillet P. (1988). A priori solution of a traveling salesman problem in which a random subset of the customers are visited. Oper. Res. 36(6): 929–936 MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Laporte G., Louveaux F. and Mercure H. (1992). The vehicle routing problem with stochastic travel times. Transportation Sci. 26(3): 161–170 MATHCrossRefGoogle Scholar
  13. 13.
    Laporte G., Louveaux F. and Mercure H. (1994). A priori optimization of the probabilistic traveling salesman problem. Oper. Res. 42(3): 543–549 MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Powell, W.B., Jaillet, P., Odoni, A.: Stochastic and dynamic networks and routing. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds) Network Routing Handbooks in Operations Research and Management Science 8, pp 141–295 (1995)Google Scholar
  15. 15.
    Takacs L. (1967). Combinatorial Methods in the Theory of Stochastic Processes. Wiley, New York MATHGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • François Louveaux
    • 1
  • Juan-José Salazar-González
    • 2
  1. 1.Louvain School of Management, FUNDPUniversity of NamurNamurBelgium
  2. 2.Departamento de Estadística, Investigación Operativa y Computación. Facultad de MatemáticasUniversidad de La LagunaLa Laguna, TenerifeSpain

Personalised recommendations