Mathematical Programming

, Volume 118, Issue 2, pp 371–406 | Cite as

Scenario tree modeling for multistage stochastic programs

  • Holger Heitsch
  • Werner Römisch


An important issue for solving multistage stochastic programs consists in the approximate representation of the (multivariate) stochastic input process in the form of a scenario tree. In this paper, we develop (stability) theory-based heuristics for generating scenario trees out of an initial set of scenarios. They are based on forward or backward algorithms for tree generation consisting of recursive scenario reduction and bundling steps. Conditions are established implying closeness of optimal values of the original process and its tree approximation, respectively, by relying on a recent stability result in Heitsch, Römisch and Strugarek (SIAM J Optim 17:511–525, 2006) for multistage stochastic programs. Numerical experience is reported for constructing multivariate scenario trees in electricity portfolio management.


Stochastic programming Multistage Stability Lr-distance Filtration Scenario tree Scenario reduction 

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barty, K.: Contributions à la discrétisation des contraintes de mesurabilité pour les problèmes d’optimisation stochastique. Thèse de Doctorat, École Nationale des Ponts et Chaussées, (2004)Google Scholar
  2. 2.
    Casey M. and Sen S. (2005). The scenario generation algorithm for multistage stochastic linear programming. Math. Oper. Res. 30: 615–631 zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chiralaksanakul, A.; Morton, D.P.: Assessing policy quality in multi-stage stochastic programming. Stochastic Programming E-Print Series 12–2004 (<>).
  4. 4.
    Corvera Poiré, X.: Model Generation and Sampling Algorithms for Dynamic Stochastic Programming. PhD Thesis, Department of Mathematics, University of Essex (1995)Google Scholar
  5. 5.
    Dempster M.A.H. (2004). Sequential importance sampling algorithms for dynamic stochastic programming. Zap. Nauchn. Semin. POMI 312: 94–129 zbMATHGoogle Scholar
  6. 6.
    Dudley R.M. (1989). Real Analysis and Probability. Chapman & Hall, New York zbMATHGoogle Scholar
  7. 7.
    Dunford N. and Schwartz J.T. (1988). Linear Operators, Part I: General Theory. Wiley Classics Library, New York zbMATHGoogle Scholar
  8. 8.
    Dupačová J., Consigli G. and Wallace S.W. (2000). Scenarios for multistage stochastic programs. Ann. Oper. Res. 100: 25–53 zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dupačová J., Gröwe-Kuska N. and Römisch W. (2003). Scenario reduction in stochastic programming: an approach using probability metrics. Math. Program. 95: 493–511 zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Eichhorn, A.; Römisch, W.; Wegner, I.: Mean-risk optimization of electricity portfolios using multiperiod polyhedral risk measures, IEEE St. Petersburg Power Tech (2005)Google Scholar
  11. 11.
    Fetter H. (1977). On the continuity of conditional expectations. J. Math. Anal. Appl. 61: 227–231 zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fleten, S.-E.; Kristoffersen, T.K.: Short-term hydropower production planning by stochastic programming. Comput. Oper. Res. (to appear)Google Scholar
  13. 13.
    Frauendorfer K. (1996). Barycentric scenario trees in convex multistage stochastic programming. Math. Programm. Ser. B 75: 277–293 MathSciNetGoogle Scholar
  14. 14.
    Givens C.R. and Shortt R.M. (1984). A class of Wasserstein metrics for probability distributions. Michigan Math. J. 31: 231–240 zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Graf S. and Luschgy H. (2000). Foundations of Quantization for Probability. Distributions Lecture Notes in Mathematics, vol. 1730. Springer, Berlin Google Scholar
  16. 16.
    Gröwe-Kuska, N., Heitsch, H., Römisch, W.: Modellierung stochastischer Datenprozesse für Optimierungsmodelle der Energiewirtschaft, IT-Lösungen für die Energiewirtschaft in liberalisierten Märkten, VDI-Berichte 1647, pp. 69–78. VDI-Verlag, Düsseldorf (2001)Google Scholar
  17. 17.
    Gröwe-Kuska, N., Heitsch, H., Römisch, W.: Scenario reduction and scenario tree construction for power management problems. In: Borghetti, A., Nucci, C.A., Paolone, M. (eds.) IEEE Bologna Power Tech Proceedings (2003)Google Scholar
  18. 18.
    Gröwe-Kuska, N., Römisch, W.: Stochastic unit commitment in hydro-thermal power production planning. In: Wallace, S.W., Ziemba, W.T. (eds.) Chapter 30 in Applications of Stochastic Programming, MPS-SIAM Series in Optimization (2005)Google Scholar
  19. 19.
    Heitsch H. and Römisch W. (2003). Scenario reduction algorithms in stochastic programming. Comput. Optim. Appl. 24: 187–206 zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Heitsch, H., Römisch, W.: Generation of multivariate scenario trees to model stochasticity in power management. IEEE St. Petersburg Power Tech (2005)Google Scholar
  21. 21.
    Heitsch, H., Römisch, W.: Stability and scenario trees for multistage stochastic programs, Preprint 324, DFG Research Center Matheon. In: Dantzig, G., Infanger, G. (eds.) Mathematics for key technologies, 2006 and submitted to Stochastic Programming—The State of the Art (2006)Google Scholar
  22. 22.
    Heitsch H., Römisch W. and Strugarek C. (2006). Stability of multistage stochastic programs. SIAM J. Optim. 17: 511–525 zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Higle, J.L., Rayco, B., Sen, S.: Stochastic scenario decomposition for multistage stochastic programs. Ann. Oper. Res. (submitted)Google Scholar
  24. 24.
    Hochreiter R. and Pflug G. Ch. (2007). Financial scenario generation for stochastic multi-stage decision processes as facility location problems. Ann. Oper. Res. 152: 257–272 zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Høyland K. and Wallace S.W. (2001). Generating scenario trees for multi-stage decision problems. Manage. Sci. 47: 295–307 CrossRefGoogle Scholar
  26. 26.
    Høyland K., Kaut M. and Wallace S.W. (2003). A heuristic for moment-matching scenario generation. Comput. Optim. Appl. 24: 169–185 CrossRefMathSciNetGoogle Scholar
  27. 27.
    Kaut, M., Wallace, S.W.: Evaluation of scenario-generation methods for stochastic programming. Stochastic Programming E-Print Series 14–2003 (<>).
  28. 28.
    Kuhn D. (2005). Generalized Bounds for Convex Multistage Stochastic Programs. Lecture Notes in Economics and Mathematical Systems, vol. 548. Springer, Berlin Google Scholar
  29. 29.
    Möller, A., Römisch, W., Weber, K.: Airline network revenue management by multistage stochastic programming. Comput. Manage. Sci. (to appear)Google Scholar
  30. 30.
    Pennanen T. (2005). Epi-convergent discretizations of multistage stochastic programs. Math. Oper. Res. 30: 245–256 zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Pennanen, T.: Epi-convergent discretizations of multistage stochastic programs via integration quadratures. Stochastic Programming E-Print Series 19–2004 (<>). Math. Programm. (to appear)
  32. 32.
    Pflug G.Ch. (2001). Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Program. 89: 251–271 zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Rachev S.T. (1991). Probability Metrics and the Stability of Stochastic Models. Wiley, New York zbMATHGoogle Scholar
  34. 34.
    Rachev S.T. and Römisch W. (2002). Quantitative stability in stochastic programming: The method of probability metrics. Math. Oper. Res. 27: 792–818 zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Rachev S.T. and Rüschendorf L. (1998). Mass Transportation Problems, vols. I and II. Springer, Berlin Google Scholar
  36. 36.
    Rachev S.T. and Schief A. (1992). On L p-minimal metrics. Prob. Math. Stat. 13: 311–320 zbMATHMathSciNetGoogle Scholar
  37. 37.
    Robinson S.M. (1981). Some continuity properties of polyhedral multifunctions. Math. Program. Study 14: 206–214 zbMATHGoogle Scholar
  38. 38.
    Rockafellar R.T. and Wets R.J.-B. (1998). Variational Analysis. Springer, Berlin zbMATHGoogle Scholar
  39. 39.
    Römisch W. (1979). Kennwertmethoden für stochastische Volterrasche Integralgleichungen. Wiss. Zeitschr. Humb.-Univ. Berlin, Math.-Nat. R. XXVIII: 523–533 Google Scholar
  40. 40.
    Römisch W. (1981). On the approximate solution of random operator equations. Wiss. Zeitschr. Humb.-Univ. Berlin, Math.-Nat. R. XXX: 455–462 Google Scholar
  41. 41.
    Römisch W. (2003). Stability of stochastic programming problems. In: Ruszczyński, A. and Shapiro, A. (eds) Stochastic Programming, Handbooks in Operations Research and Management Science, vol 10, pp 483–554. Elsevier, Amsterdam Google Scholar
  42. 42.
    Römisch W. and Schultz R. (1991). Stability analysis for stochastic programs. Ann. Oper. Res. 30: 241–266 zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Ruszczyński A. and Shapiro A. (eds) (2003) Stochastic Programming, Handbooks in Operations Research and Management Science, vol 10. Elsevier, Amsterdam Google Scholar
  44. 44.
    Shapiro A. (2003). Inference of statistical bounds for multistage stochastic programming problems. Math. Meth. Oper. Res. 58: 57–68 zbMATHCrossRefGoogle Scholar
  45. 45.
    Shapiro A. (2006). On complexity of multistage stochastic programs. Oper. Res. Lett. 34: 1–8 zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of MathematicsHumboldt-University BerlinBerlinGermany

Personalised recommendations