Advertisement

Mathematical Programming

, Volume 118, Issue 1, pp 109–149 | Cite as

Direct methods with maximal lower bound for mixed-integer optimal control problems

  • Sebastian SagerEmail author
  • Hans Georg Bock
  • Gerhard Reinelt
FULL LENGTH PAPER

Abstract

Many practical optimal control problems include discrete decisions. These may be either time-independent parameters or time-dependent control functions as gears or valves that can only take discrete values at any given time. While great progress has been achieved in the solution of optimization problems involving integer variables, in particular mixed-integer linear programs, as well as in continuous optimal control problems, the combination of the two is yet an open field of research. We consider the question of lower bounds that can be obtained by a relaxation of the integer requirements. For general nonlinear mixed-integer programs such lower bounds typically suffer from a huge integer gap. We convexify (with respect to binary controls) and relax the original problem and prove that the optimal solution of this continuous control problem yields the best lower bound for the nonlinear integer problem. Building on this theoretical result we present a novel algorithm to solve mixed-integer optimal control problems, with a focus on discrete-valued control functions. Our algorithm is based on the direct multiple shooting method, an adaptive refinement of the underlying control discretization grid and tailored heuristic integer methods. Its applicability is shown by a challenging application, the energy optimal control of a subway train with discrete gears and velocity limits.

Keywords

Optimal control Mixed-integer programming Hybrid systems 

Mathematics Subject Classification (2000)

34H05 90C11 49J30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alamir, M., Attia, S.A.: On solving optimal control problems for switched hybrid nonlinear systems by strong variations algorithms. In: 6th IFAC Symposium, NOLCOS, Stuttgart, Germany (2004)Google Scholar
  2. 2.
    Allgor R. and Barton P. (1999). Mixed-integer dynamic optimization. I-Problem formulation. Comput. Chem. Eng. 23(4): 567–584 CrossRefGoogle Scholar
  3. 3.
    Antsaklis, P., Koutsoukos, X.: On hybrid control of complex systems: a survey. In: 3rd International conference ADMP’98, automation of mixed processes: dynamic hybrid systems, pp. 1–8. Reims, France (1998)Google Scholar
  4. 4.
    Attia, S., Alamir, M., Canudas de Wit, C.: Sub optimal control of switched nonlinear systems under location and switching constraints. In: IFAC World Congress (2005)Google Scholar
  5. 5.
    Aumann R. (1965). Integrals of set-valued functions. J. Math. Anal. Appl. 12: 1–12 zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bansal V., Sakizlis V., Ross R., Perkins J. and Pistikopoulos E. (2003). New algorithms for mixed-integer dynamic optimization. Comput. Chem. Eng. 27: 647–668 CrossRefGoogle Scholar
  7. 7.
    Bär, V.: Ein Kollokationsverfahren zur numerischen Lösung allgemeiner Mehrpunktrandwertaufgaben mit Schalt und Sprungbedingungen mit Anwendungen in der optimalen Steuerung und der Parameteridentifizierung. Master’s Thesis, Universität Bonn (1984)Google Scholar
  8. 8.
    Barton P. and Lee C. (2002). Modeling, simulation, sensitivity analysis and optimization of hybrid systems. ACM Trans. Model. Comput. Simul. 12(4): 256–289 CrossRefGoogle Scholar
  9. 9.
    Barton P. and Lee C. (2004). Design of process operations using hybrid dynamic optimization. Comput. Chem. Eng. 28(6–7): 955–969 CrossRefGoogle Scholar
  10. 10.
    Biegler L. (1984). Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation. Comput. Chem. Eng. 8: 243–248 CrossRefGoogle Scholar
  11. 11.
    Binder T., Blank L., Bock H., Bulirsch R., Dahmen W., Diehl M., Kronseder T., Marquardt W., Schlöder J. and Stryk O.  (2001). Introduction to model based optimization of chemical processes on moving horizons. In: Grötschel, M., Krumke, S., and Rambau, J. (eds) Online Optimization of Large Scale Systems: State of the Art, pp 295–340. Springer, Heidelberg Google Scholar
  12. 12.
    Bock, H., Eich, E., Schlöder, J.: Numerical solution of constrained least squares boundary value problems in differential-algebraic equations. In: Strehmel, K. (ed.) Numerical Treatment of Differential Equations. Teubner, Leipzig (1988)Google Scholar
  13. 13.
    Bock, H., Longman, R.: Computation of optimal controls on disjoint control sets for minimum energy subway operation. In: Proceedings of the American Astronomical Society. Symposium on Engineering Science and Mechanics. Taiwan (1982)Google Scholar
  14. 14.
    Bock, H., Plitt, K.: A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings 9th IFAC World Congress Budapest, pp. 243–247. Pergamon Press, NY, USA (1984)Google Scholar
  15. 15.
    Brandt-Pollmann, U.: Numerical solution of optimal control problems with implicitly defined discontinuities with applications in engineering. Ph.D. thesis, IWR, Universität Heidelberg (2004)Google Scholar
  16. 16.
    Burgschweiger, J., Gnädig, B., Steinbach, M.: Optimization models for operative planning in drinking water networks. Technical report, ZR-04-48, ZIB (2004)Google Scholar
  17. 17.
    Buss M., Glocker M., Hardt M., Stryk O.v., Bulirsch R. and Schmidt G. (2002). Nonlinear Hybrid Dynamical Systems: Modelling, Optimal Control, and Applications, vol. 279. Springer, Berlin Google Scholar
  18. 18.
    Chachuat B., Singer A. and Barton P. (2006). Global methods for dynamic optimization and mixed-integer dynamic optimization. Ind. Eng. Chem. Res. 45(25): 8573–8392 CrossRefGoogle Scholar
  19. 19.
    Diehl, M., Leineweber, D., Schäfer, A.: MUSCOD-II Users’ Manual. IWR-Preprint 2001-25, Universität Heidelberg (2001)Google Scholar
  20. 20.
    Duran M. and Grossmann I. (1986). An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3): 307–339 zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Esposito W. and Floudas C. (2000). Deterministic global optimization in optimal control problems. J. Glob. Optim. 17: 97–126 zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Floudas C., Akrotirianakis I., Caratzoulas S., Meyer C. and Kallrath J. (2005). Global optimization in the 21st century: Advances and challenges. Comput. Chem. Eng. 29(6): 1185–1202 CrossRefGoogle Scholar
  23. 23.
    Fuller A. (1963). Study of an optimum nonlinear control system. J. Electron. Control 15: 63–71 MathSciNetGoogle Scholar
  24. 24.
    Gallitzendörfer J., Bock H.: Parallel algorithms for optimization boundary value problems in DAE. In: Langendörfer H. (ed.) Praxisorientierte Parallelverarbeitung. Hanser, München (1994)Google Scholar
  25. 25.
    Gerdts M. (2006). A variable time transformation method for mixed-integer optimal control problems. Optim. Control Appl. Methods 27(3): 169–182 CrossRefMathSciNetGoogle Scholar
  26. 26.
    Grossmann I. (2002). Review of nonlinear mixed-integer and disjunctive programming techniques. Optim. Eng. 3: 227–252 zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Grossmann I., Aguirre P. and Barttfeld M. (2005). Optimal synthesis of complex distillation columns using rigorous models. Comput. Chem. Eng. 29: 1203–1215 CrossRefGoogle Scholar
  28. 28.
    Hermes H. and Lasalle J. (1969). Functional analysis and time optimal control, Mathematics in science and engineering, vol. 53. Academic, New York CrossRefGoogle Scholar
  29. 29.
    Kawajiri, Y., Biegler, L.: Large-scale optimization strategies for zone configuration of simulated moving beds. In: 16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering, pp. 131–136. Elsevier, Amsterdam (2006)Google Scholar
  30. 30.
    Kaya C. and Noakes J. (1996). Computations and time-optimal controls. Optim. Control Appl. Methods 17: 171–185 zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Kaya C. and Noakes J. (2003). A computational method for time-optimal control. J. Optim. Theory Appl. 117: 69–92 zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Krämer-Eis P. (1985). Ein Mehrzielverfahren zur numerischen Berechnung optimaler Feedback-Steuerungen bei beschränkten nichtlinearen Steuerungsproblemen, Bonner Mathematische Schriften, vol. 166. Universität Bonn, Bonn Google Scholar
  33. 33.
    Laurent-Varin, J., Bonnans, F., Berend, N., Talbot, C., Haddou, M.: On the refinement of discretization for optimal control problems. IFAC Symposium on Automatic Control in Aerospace, St Petersburg (2004)Google Scholar
  34. 34.
    Lebiedz, D., Sager, S., Bock, H., Lebiedz, P.: Annihilation of limit cycle oscillations by identification of critical phase resetting stimuli via mixed-integer optimal control methods. Phys. Rev. Lett. 95, 108,303 (2005)Google Scholar
  35. 35.
    Lee C., Singer A. and Barton P. (2004). Global optimization of linear hybrid systems with explicit transitions. Syst. Control Lett. 51(5): 363–375 zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Lee H., Teo K., Jennings L. and Rehbock V. (1999). Control parametrization enhancing technique for optimal discrete-valued control problems. Automatica 35(8): 1401–1407 zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Leineweber D. (1999). Efficient reduced SQP methods for the optimization of chemical processes described by large sparse DAE models, Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik, vol. 613. VDI Verlag, Düsseldorf Google Scholar
  38. 38.
    Leineweber D., Bauer I., Bock H. and Schlöder J. (2003). An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part I: Theoretical aspects. Comput. Chem. Eng. 27: 157–166 CrossRefGoogle Scholar
  39. 39.
    Maurer H., Büskens C., Kim J. and Kaya Y. (2005). Optimization methods for the verification of second-order sufficient conditions for bang–bang controls. Optim. Control Methods Appl. 26: 129–156 CrossRefGoogle Scholar
  40. 40.
    Maurer H. and Osmolovskii N.P. (2004). Second order sufficient conditions for time-optimal bang–bang control. SIAM J. Control Optim. 42: 2239–2263 zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Mohideen M., Perkins J. and Pistikopoulos E. (1997). Towards an efficient numerical procedure for mixed integer optimal control. Comput. Chem. Eng. 21: S457–S462 Google Scholar
  42. 42.
    Neustadt L. (1963). The existence of optimal controls in absence of convexity conditions. J. Math. Anal. Appl. 7: 110–117 zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Oldenburg J. (2005). Logic-based modeling and optimization of discrete-continuous dynamic systems, Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik, vol. 830. VDI Verlag, Düsseldorf Google Scholar
  44. 44.
    Oldenburg J., Marquardt W., Heinz D. and Leineweber D. (2003). Mixed logic dynamic optimization applied to batch distillation process design. AIChE J. 49(11): 2900–2917 CrossRefGoogle Scholar
  45. 45.
    Papamichail I. and Adjiman C. (2004). Global optimization of dynamic systems. Comput. Chem. Eng. 28: 403–415 CrossRefGoogle Scholar
  46. 46.
    Plitt, K.: Ein superlinear konvergentes Mehrzielverfahren zur direkten Berechnung beschränkter optimaler Steuerungen. Master’s Thesis, Universität Bonn (1981)Google Scholar
  47. 47.
    Rehbock V. and Caccetta L. (2002). Two defence applications involving discrete valued optimal control. ANZIAM J. 44(E): E33–E54 MathSciNetGoogle Scholar
  48. 48.
    Sager, S.: Numerical methods for mixed-integer optimal control problems. Der andere Verlag, Tönning, Lübeck, Marburg. ISBN 3-89959-416-9. Available at http://sager1.de/sebastian/downloads/Sager2005.pdf (2005)Google Scholar
  49. 49.
    Sager S., Bock H., Diehl M., Reinelt G. and Schlöder J. (2006). Numerical methods for optimal control with binary control functions applied to a Lotka-Volterra type fishing problem. In: Seeger, A. (eds) Recent Advances in Optimization (Proceedings of the 12th French-German-Spanish Conference on Optimization), Lectures Notes in Economics and Mathematical Systems, vol. 563, pp 269–289. Springer, Heidelberg Google Scholar
  50. 50.
    Sager, S., Diehl, M., Singh, G., Küpper, A., Engell, S.: Determining SMB superstructures by mixed-integer control. In: Proceedings of OR2006. Karlsruhe (2007)Google Scholar
  51. 51.
    Sager, S., Kawajiri, Y., Biegler, L.: On the optimality of superstructures for simulated moving beds: Is one pump sufficient for each stream? AIChE J. (2007) (submitted)Google Scholar
  52. 52.
    Schäfer, A.: Efficient reduced Newton-type methods for solution of large-scale structured optimization problems with application to biological and chemical processes. Ph.D. thesis, Universität Heidelberg (2005)Google Scholar
  53. 53.
    Schlegel M. (2005). Adaptive discretization methods for the efficient solution of dynamic optimization problems, Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik, vol. 829. VDI Verlag, Düsseldorf Google Scholar
  54. 54.
    Schlöder J. (1988). Numerische Methoden zur Behandlung hochdimensionaler Aufgaben der Parameteridentifizierung, Bonner Mathematische Schriften, vol. 187. Universität Bonn, Bonn Google Scholar
  55. 55.
    Schulz V., Bock H. and Steinbach M. (1998). Exploiting invariants in the numerical solution of multipoint boundary value problems for DAEs. SIAM J. Sci. Comput. 19: 440–467 zbMATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Schweiger C. and Floudas C. (1997). Interaction of design and control: Optimization with dynamic models. In: Hager, W. and Pardalos, P. (eds) Optimal Control: Theory, Algorithms and Applications, pp 388–435. Kluwer, Dordrecht Google Scholar
  57. 57.
    Shaikh M. (2004) Optimal control of hybrid systems: Theory and algorithms. Ph.D. Thesis, Department of Electrical and Computer Engineering, McGill University, Montreal, CanadaGoogle Scholar
  58. 58.
    Shaikh, M., Caines, P.: On the hybrid optimal control problem: Theory and algorithms. IEEE Transactions on Automatic Control (2006) (in press)Google Scholar
  59. 59.
    Srinivasan B., Palanki S. and Bonvin D. (2003). Dynamic Optimization of Batch Processes: I. Characterization of the nominal solution. Comput. Chem. Eng. 27: 1–26 CrossRefGoogle Scholar
  60. 60.
    Stryk, O., Glocker, M.: Decomposition of mixed-integer optimal control problems using branch and bound and sparse direct collocation. In: Proceedings of ADPM 2000. The 4th international conference on automatisation of mixed processes: hybrid dynamical systems, pp. 99–104 (2000)Google Scholar
  61. 61.
    Stursberg O., Panek S., Till J. and Engell S. (2002). Generation of optimal control policies for systems with switched hybrid dynamics. In: Engell, S., Frehse, G., and Schnieder, E. (eds) Modelling, Analysis and Design of Hybrid Systems, pp 337–352. Springer, Heidelberg CrossRefGoogle Scholar
  62. 62.
    Sussmann, H.: A maximum principle for hybrid optimal control problems. In: Conference proceedings of the 38th IEEE conference on decision and control. Phoenix (1999)Google Scholar
  63. 63.
    Terwen, S., Back, M., Krebs, V.: Predictive powertrain control for heavy duty trucks. In: Proceedings of IFAC symposium in advances in automotive control, pp. 451–457. Salerno, Italy (2004)Google Scholar
  64. 64.
    Till J., Engell S., Panek S. and Stursberg O. (2004). Applied hybrid system optimization: An empirical investigation of complexity. Control Eng. 12: 1291–1303 CrossRefGoogle Scholar
  65. 65.
    Turkay M. and Grossmann I. (1996). Logic-based MINLP algorithms for the optimal synthesis of process networks. Comput. Chem. Eng. 20: 959–978 CrossRefGoogle Scholar
  66. 66.
    Zelikin M. and Borisov V. (1994). Theory of chattering control with applications to astronautics, robotics, economics and engineering. Birkhäuser, Basel zbMATHGoogle Scholar
  67. 67.
    Zhang J., Johansson K., Lygeros J. and Sastry S. (2001). Zeno hybrid systems. Int. J. Robust Nonlinear Control 11: 435–451 zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Sebastian Sager
    • 1
    Email author
  • Hans Georg Bock
    • 1
  • Gerhard Reinelt
    • 1
  1. 1.Interdisciplinary Center for Scientific ComputingHeidelbergGermany

Personalised recommendations