Advertisement

Mathematical Programming

, Volume 115, Issue 2, pp 351–385 | Cite as

An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts

  • Roberto Baldacci
  • Nicos Christofides
  • Aristide Mingozzi
FULL LENGTH PAPER

Abstract

This paper presents a new exact algorithm for the Capacitated Vehicle Routing Problem (CVRP) based on the set partitioning formulation with additional cuts that correspond to capacity and clique inequalities. The exact algorithm uses a bounding procedure that finds a near optimal dual solution of the LP-relaxation of the resulting mathematical formulation by combining three dual ascent heuristics. The first dual heuristic is based on the q-route relaxation of the set partitioning formulation of the CVRP. The second one combines Lagrangean relaxation, pricing and cut generation. The third attempts to close the duality gap left by the first two procedures using a classical pricing and cut generation technique. The final dual solution is used to generate a reduced problem containing only the routes whose reduced costs are smaller than the gap between an upper bound and the lower bound achieved. The resulting problem is solved by an integer programming solver. Computational results over the main instances from the literature show the effectiveness of the proposed algorithm.

Keywords

Vehicle routing Set partitioning Dual ascent Valid inequalities 

Mathematics Subject Classification (2000)

90C27 49M29 90C39 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Augerat, P.: Approche polyédrale du problème de tournées de véhicules. Ph.D. thesis, Institut National Polytechnique de Grenoble (1995)Google Scholar
  2. 2.
    Augerat, P., Belenguer, J.M., Benavent, E., Corberán, A., Naddef, D., Rinaldi, G.: Computational results with a branch and cut code for the capacitated vehicle routing problem. Tech. Rep. 1 RR949-M, ARTEMIS-IMAG, Grenoble France (1995)Google Scholar
  3. 3.
    Balas E. and Padberg M.W. (1976). Set partitioning: a survey. SIAM Rev. 18: 710–760 CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Baldacci R., Bodin L.D. and Mingozzi A. (2006). The multiple disposal facilities and multiple inventory locations rollon-rolloff vehicle routing problem. Comput. Oper. Res. 33: 2667–2702 CrossRefzbMATHGoogle Scholar
  5. 5.
    Baldacci R., Hadjiconstantinou E.A., Maniezzo V. and Mingozzi A. (2002). A new method for solving capacitated location problems based on a set partitioning approach. Comput. Oper. Res. 29: 365–386 CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Baldacci R., Hadjiconstantinou E.A. and Mingozzi A. (2004). An exact algorithm for the capacitated vehicle routing problem based on a two-commodity network flow formulation. Oper. Res. 52: 723–738 CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Balinski M. and Quandt R. (1964). On an integer program for a delivery problem. Oper. Res. 12: 300–304 Google Scholar
  8. 8.
    (1995). Network Routing, Handbooks in Operations Research and Management, vol. 8. Elsevier, Amsterdam Google Scholar
  9. 9.
    (2007). Transportation, Handbooks in Operations Research and Management Science, vol. 14. North-Holland, Amsterdam Google Scholar
  10. 10.
    Bianco L., Mingozzi A. and Ricciardelli S. (1994). A set partitioning approach to the multiple depot vehicle scheduling problem. Optim. Methods Softw. 3: 163–194 CrossRefGoogle Scholar
  11. 11.
    Bodin L.D., Mingozzi A. and Maniezzo V. (2003). Street routing and scheduling problems. In: Hall, R. (eds) Handbook of Transportation Science, vol. 2, pp 413–438. Kluwer, Boston CrossRefGoogle Scholar
  12. 12.
    Bramel, J., Simchi-Levi, D.: Set-covering-based algorithms for the capacitated VRP. In: Toth, P., Vigo D. (eds.) The Vehicle Routing Problem, vol. 9, pp. 85–108 SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, (2002)Google Scholar
  13. 13.
    Christofides N. and Eilon S. (1969). An algorithm for the vehicle dispatching problem. Oper. Res. Q. 20: 309–318 Google Scholar
  14. 14.
    Christofides N., Mingozzi A. and Toth P. (1979). The vehicle routing problem. In: Christofides, N., Mingozzi, A., Toth, P., and Sandi, C. (eds) Combinatorial Optimization., pp 315–338. Wiley, Chichester Google Scholar
  15. 15.
    Christofides N., Mingozzi A. and Toth P. (1981). Exact algorithms for the vehicle routing problem based on spanning tree and shortest path relaxation. Math. Program. 10: 255–280 CrossRefMathSciNetGoogle Scholar
  16. 16.
    Cordeau J.-F., Laporte G., Savelsbergh M.W.P. and Vigo D. (2007). Vehicle routing. In: Barnhart, C. and Laporte, G. (eds) Transportation, Handbooks in Operations Research and Management Science, vol. 14, pp 367–428. North-Holland, Amsterdam Google Scholar
  17. 17.
    Cornuéjols G. and Harche F. (1993). Polyhedral study of the capacitated vehicle routing. Math. Program. 60: 21–52 CrossRefGoogle Scholar
  18. 18.
    CPLEX: ILOG CPLEX 9.0 callable library. ILOG (2004)Google Scholar
  19. 19.
    Fischetti M. and Toth P. (1989). An additive bounding procedure for combinatorial optimization problems. Oper. Res. 37: 319–328 MathSciNetzbMATHGoogle Scholar
  20. 20.
    Fisher, M.L.: Vehicle routing. In: Ball, M.O., Magnanti T.L., Monma, C.L., Nemhauser, G.L. Network Routing, Handbooks in Operations Research and Management Science, vol. 8, pp. 1–133. North-Holland, Amsterdam (1995)Google Scholar
  21. 21.
    Fukasawa R., Longo H., Lysgaard J., Poggi de Aragão M., Reis M., Uchoa E. and Werneck R.F. (2006). Robust branch-and-cut-and-price for the capacitated vehicle routing problem. Math. Program. Ser. A 106: 491–511 CrossRefzbMATHGoogle Scholar
  22. 22.
    Garey M.R. and Johnson D.S. (1990). Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York Google Scholar
  23. 23.
    Gendreau, M., Laporte, G., Potvin, J.-Y.: Metaheuristics for the capacitated VRP. In: Toth, P., Vigo D. (eds.) The Vehicle Routing Problem, vol. 9, pp. 129–154 SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, (2002)Google Scholar
  24. 24.
    Hoffman K. and Padberg M.W. (1993). Solving airline crew scheduling problems by branch and cut. Manage. Sci. 39: 657–682 zbMATHGoogle Scholar
  25. 25.
    Kim S., Chang K.N. and Lee J.Y. (1995). A descent method with linear programming subproblems for nondifferentiable convex optimization. Math. Program. 71: 17–28 CrossRefMathSciNetGoogle Scholar
  26. 26.
    Laporte G. (1992). The vehicle routing problem: An overview of exact and approximate algorithms. Eur. J. Oper. Res. 59: 345–358 CrossRefzbMATHGoogle Scholar
  27. 27.
    Laporte G., Nobert Y. and Desrochers M. (1985). Optimal routing under capacity and distance restrictions. Oper. Res. 33: 1058–1073 MathSciNetGoogle Scholar
  28. 28.
    Laporte, G., Semet F.: Classical heuristics for the capacitated VRP. In: Toth, P., Vigo, D. (eds.) The Vehicle Routing Problem, vol. 9, pp. 109–128. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia (2002)Google Scholar
  29. 29.
    Letchford A.N., Eglese R.W. and Lysgaard J. (2002). Multistars, partial multistars and the capacitated vehicle routing problem. Math. Program. Ser. A 94: 21–40 CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Lübbecke M.E. and Desrosiers J. (2005). Selected topics in column generation. Oper. Res. 53: 1007–1023 CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    Lysgaard, J.: CVRPSEP: A package of separation routines for the capacitated vehicle routing problem. Technical report, Department of Management Science and Logistics, Aarhus School of Business (2003)Google Scholar
  32. 32.
    Lysgaard J., Letchford A.N. and Eglese R.W. (2004). A new branch-and-cut algorithm for the capacitated vehicle routing problem. Math. Program. Ser. A 100: 423–445 CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Marsten R.E., Hogan W.W. and Blankenship J.W. (1975). The boxstep method for large-scale optimization. Oper. Res. 23: 389–405 MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    du Merle O., Villeneuve D., Desrosiers J. and Hansen P. (1999). Stabilized column generation. Discrete Math. 194: 229–237 CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Mingozzi A., Boschetti M.A., Ricciardelli S. and Bianco L. (1999). A set partitioning approach to the crew scheduling problem. Oper. Res. 47: 873–888 zbMATHGoogle Scholar
  36. 36.
    Mingozzi, A., Christofides, N., Hadjiconstantinou, E.A.: An exact algorithm for the vehicle routing problem based on the set partitioning formulation. Tech. rep., University of Bologna (1994)Google Scholar
  37. 37.
    Mingozzi A., Giorgi S. and Baldacci R. (1999). An exact method for the vehicle routing problem with backhauls. Transp. Sci. 33: 315–329 zbMATHGoogle Scholar
  38. 38.
    Naddef, D., Rinaldi, G.: Branch-and-cut algorithms for the capacitated VRP. In: Toth, P., Vigo D. (eds.) The Vehicle Routing Problem, vol. 9. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, pp. 53–81 (2002)Google Scholar
  39. 39.
    Niskanen, S., Östergård, P.R.J.: Cliquer user’s guide. Tech. Rep. 48, Helsinki University of Technology Communications Laboratory (2003)Google Scholar
  40. 40.
    Östergård P.R.J. (2002). A fast algorithm for the maximum clique problem. Discrete Appl. Math. 120: 197–207 CrossRefMathSciNetzbMATHGoogle Scholar
  41. 41.
    Rousseau, L.-M., Gendreau, M., Feillet, D.: Interior point stabilization for column generation. Oper. Res. Lett. (2006). doi:10.1016/j.orl.2006.11.004Google Scholar
  42. 42.
    Toth, P., Vigo, D.: Branch-and-bound algorithms for the capacitated VRP. In: Toth, P., Vigo D. (eds.) The Vehicle Routing Problem, vol. 9. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, pp. 29–51 (2002)Google Scholar
  43. 43.
    Toth, P., Vigo, D.: The Vehicle Routing Problem, vol. 9. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia (2002)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Roberto Baldacci
    • 1
  • Nicos Christofides
    • 2
  • Aristide Mingozzi
    • 3
  1. 1.DEIS, University of BolognaCesenaItaly
  2. 2.Centre for Quantitative FinanceImperial CollegeLondonUK
  3. 3.Department of MathematicsUniversity of BolognaCesenaItaly

Personalised recommendations