Mathematical Programming

, Volume 116, Issue 1–2, pp 461–479 | Cite as

Epi-convergent discretizations of multistage stochastic programs via integration quadratures

  • Teemu Pennanen


This paper presents procedures for constructing numerically solvable discretizations of multistage stochastic programs that epi-converge to the original problem as the discretizations are made finer. Epi-convergence implies, in particular, that the cluster points of the first-stage solutions of the discretized problems are optimal first-stage solutions of the original problem. The discretization procedures apply to a general class of nonlinear stochastic programs where the uncertain factors are driven by time series models. Using existing routines for numerical integration allows for an easy and efficient implementation of the procedures.


Stochastic programming Discretization Epi-convergence Quadrature 

Mathematics Subject Classification (2000)

90C15 49M25 90C25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Attouch H. (1984). Variational Convergence for Functions and Operators. Pitman (Advanced Publishing Program), Boston zbMATHGoogle Scholar
  2. 2.
    Back K., Pliska S.R. (1987). The shadow price of information in continuous time decision problems. Stochastics 22(2): 151–186 MathSciNetzbMATHGoogle Scholar
  3. 3.
    Billingsley P. (1995). Probability and measure. 3rd edn. Wiley Series in Probability and Mathematical Statistics. Wiley, New York Google Scholar
  4. 4.
    Billingsley P. (1999). Convergence of probability measures, 2nd edn. Wiley, New York zbMATHGoogle Scholar
  5. 5.
    Black F., Karasinski P. (1991). Bond and option pricing when short rates are lognormal. Finan. Anal. J. July–August: 52–59 CrossRefGoogle Scholar
  6. 6.
    Boender, C.G.E., van Aalst, P., Heemskerk, F.: Modelling and management of assets and liabilities of pension plans in The Netherlands. In: Ziemba W.T., Mulvey J.M. (eds.) Worldwide asset and liability modeling, pp. Cambridge University Press 561–580 (1998)Google Scholar
  7. 7.
    Braides, A.: Γ for beginners. Oxford Lecture Series in Mathematics and its Applications, vol. 22. Oxford University Press, OxfordGoogle Scholar
  8. 8.
    Casey M., Sen S. (2005). The scenario generation algorithm for multistage stochastic linear programs. Math. Oper. Res. 30(3): 615–631 CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Chen X., Womersley R.S. (1996). A parallel inexact Newton method for stochastic programs with recourse. Ann. Oper. Res. 64: 113–141 CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Chiralaksanakul, A.: Monte carlo methods for multi-stage stochastic programs. PhD thesis, University of Texas at Austin, Texas (2003)Google Scholar
  11. 11.
    Clements M.P., Hendry D.F. (1999). Forecasting Non-Stationary Economic Time Series. MIT Press, Cambridge zbMATHGoogle Scholar
  12. 12.
    Dal Maso, G.: An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications, vol. 8. Birkhäuser Boston Inc., Boston (1993)Google Scholar
  13. 13.
    Dempster M.A.H., Germano M., Medova E., Villaverde M. (2003). Global asset liability management. Br. Actuar. J. 9(1): 137–195 Google Scholar
  14. 14.
    Dupačová J., Consigli G., Wallace S.W. (2001). Scenarios for multistage stochastic programs. Ann. Oper. Res. 100: 25–53 CrossRefGoogle Scholar
  15. 15.
    Dupačová J., Gröwe-Kuska N., Römisch W. (2003). Scenario reduction in stochastic programming. An approach using probability metrics. Math. Program. 95(3, Ser. A): 493–511 CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Engle R.F., Granger C.W.J. (1987). Co-integration and error correction: representation, estimation and testing. Econometrica 55(2): 251–276 CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Folland G.B. (1999). Real analysis, 2nd edn Pure and Applied Mathematics. Wiley, New York Google Scholar
  18. 18.
    Frauendorfer K. (1996). Barycentric scenario trees in convex multistage stochastic programming. Math. Programm. Approximation comput. stoc. Programm. 75(2, Ser. B): 277–293 MathSciNetGoogle Scholar
  19. 19.
    Gondzio J., Kouwenberg R., Vorst T. (2003). Hedging options under transaction costs and stochastic volatility. J. Econ. Dyn. Control 27(6): 1045–1068 CrossRefMathSciNetGoogle Scholar
  20. 20.
    Heitsch H., Römisch W. (2003). Scenario reduction algorithms in stochastic programming. Comput. Optim. Appl. Stochastic programming 24(2–3): 187–206 zbMATHGoogle Scholar
  21. 21.
    Heitsch, H., Römisch, W., Strugarek, C.: Stability of multistage stochastic programs. Preprint 255, DFG Research Center Matheon Mathematics for key technologies (2005)Google Scholar
  22. 22.
    Hilli, P., Koivu, M., Pennanen, T., Ranne, A.: A stochastic programming model for asset liability management of a finnish pension company. Ann. Oper. Res. (in press)Google Scholar
  23. 23.
    Hlawka E., Mück R. (1972). Über eine Transformation von gleichverteilten Folgen. II. Computing (Arch. Elektron. Rechnen) 9: 127–138 MathSciNetzbMATHGoogle Scholar
  24. 24.
    Ioffe A.D. (1977). On lower semicontinuity of integral functionals. I. SIAM J. Control Optimization 15(4): 521–538 CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Kouwenberg R. (2001). Scenario generation and stochastic programming models for asset liability management. Eur. J. Oper. Res. Financ. Model. 134(2): 279–292 CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    L’Ecuyer P., Lemieux C. (2000). Variance reduction via lattice rules. Manage. Sci. 46(2): 1214–1235 CrossRefGoogle Scholar
  27. 27.
    Lepp R. (1990). Approximations to stochastic programs with complete recourse. SIAM J. Control Optim. 28(2): 382–394 CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Lucchetti R., Salinetti G., Wets R.J.B. (1994). Uniform convergence of probability measures: topological criteria. J. Multivariate Anal. 51(2): 252–264 CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Marti, K., Ermoliev, Y., Pflug, G. (eds.): Dynamic stochastic optimization, Lecture Notes in Economics and Mathematical Systems. vol. 532. Papers from the IFIP/IIASA/GAMM Workshop held in Laxenburg, March 11–14, 2002. Springer, Berlin (2004)Google Scholar
  30. 30.
    Marti, K., Kall, P. (eds.): Stochastic programming. Lecture Notes in Economics and Mathematical Systems. vol. 423. Numerical techniques and engineering applications. Springer, Berlin (1995)Google Scholar
  31. 31.
    Marti, K., Kall, P. (eds.): Stochastic programming methods and technical applications. Lecture Notes in Economics and Mathematical Systems. vol. 458. Springer-Verlag, Berlin (1998)Google Scholar
  32. 32.
    Mordukhovich B. (1978). On difference approximations of optimal control systems. J. Appl. Math. Mech 42(3): 431–440 CrossRefMathSciNetGoogle Scholar
  33. 33.
    Niederreiter, H.: Random number generation and quasi-Monte Carlo methods, CBMS-NSF Regional Conference Series in Applied Mathematics. vol. 63. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)Google Scholar
  34. 34.
    Niederreiter, H. (ed.): Monte Carlo and quasi-Monte Carlo methods 2002. In: Proceedings of a conference held at the National Univeristy of Singapore, Republic of Singapore, November 25–28, 2002. Springer-Verlag, Berlin (2004)Google Scholar
  35. 35.
    Olsen P. (1976). Discretizations of multistage stochastic programming problems. Math. Programm. Stud. 6: 111–124 MathSciNetGoogle Scholar
  36. 36.
    Pennanen T. (2005). Epi-convergent discretizations of multistage stochastic programs. Math. Oper. Res. 30(1): 245–256 CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    Pennanen, T., Koivu, M.: Integration quadratures in discretization of stochastic programs. Stochastic Programming E-Print Series (2002)Google Scholar
  38. 38.
    Pennanen T., Koivu M. (2005). Epi-convergent discretizations of stochastic programs via integration quadratures. Numer. Math. 100(1): 141–163 CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Pflug G. (2001). Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Program. Math. Programm. Finance 89(2, Ser. B): 251–271 MathSciNetzbMATHGoogle Scholar
  40. 40.
    Pflug, G., Hochreiter, R.: Scenario generation for stochastic multi-stage decision processes as facility location problems. Technical report, Department of Statistics and Decision Support Systems, University of Vienna (2003)Google Scholar
  41. 41.
    Polak, E.: Optimization. Applied Mathematical Sciences. vol. 124. Algorithms and consistent approximations. Springer, New York (1997)Google Scholar
  42. 42.
    Rockafellar R.T., Wets R.J.B. (1974). Continuous versus measurable recourse in N-stage stochastic programming. J. Math. Anal. Appl. 48: 836–859 CrossRefMathSciNetzbMATHGoogle Scholar
  43. 43.
    Rockafellar R.T., Wets R.J.B. (1976). Nonanticipativity and L 1-martingales in stochastic optimization problems. Math. Programm. Stud. 6: 170–187 MathSciNetGoogle Scholar
  44. 44.
    Rockafellar R.T., Wets R.J.B. (1977). Measures as Lagrange multipliers in multistage stochastic programming. J. Math. Anal. Appl. 60(2): 301–313 CrossRefMathSciNetzbMATHGoogle Scholar
  45. 45.
    Rockafellar, R.T., Wets, R.J.B.: Variational analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] vol. 317. Springer, Berlin (1998)Google Scholar
  46. 46.
    Römisch, W.: Stability of stochastic programming problems. In: Stochastic Programming, Handbooks in Operations Research and Management Science. vol. 10, pp. 483–554. Elsevier, Amsterdam (2003)Google Scholar
  47. 47.
    Ruszczynski, A., Shapiro, A. (eds.): Stochastic Programming, Handbooks in Operations Research and Management Science. vol. 10. Elsevier, Amsterdam (2003)Google Scholar
  48. 48.
    Shapiro A. (2003). Inference of statistical bounds for multistage stochastic programming problems. Math. Methods Oper. Res. 58(1): 57–68 CrossRefMathSciNetzbMATHGoogle Scholar
  49. 49.
    Shapiro, A.: On complexity of multistage stochastic programs. Optimization Online (2005)Google Scholar
  50. 50.
    Shiryaev, A.N.: Essentials of stochastic finance, Advanced Series on Statistical Science & Applied Probability. vol. 3. World Scientific Publishing Co. Inc., River Edge(1999)Google Scholar
  51. 51.
    Sloan I.H., Joe S. (1994). Lattice methods for multiple integration. The Clarendon Press/Oxford University Press, New York zbMATHGoogle Scholar
  52. 52.
    Vainikko G.M. (1971). The convergence of the method of mechanical quadratures for integral equations with discontinuous kernels. Siberian Math. J. 12: 29–38 CrossRefMathSciNetzbMATHGoogle Scholar
  53. 53.
    Ziemba, W.T., Mulvey, J.M. (eds.): Worldwide Asset and Liability Modeling, Publications of the Newton Institute, vol. 10. Cambridge University Press, Cambridge (1998)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Business TechnologyHelsinki School of EconomicsHelsinkiFinland

Personalised recommendations