Skip to main content

Advertisement

Log in

Valid inequalities for mixed integer linear programs

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

This tutorial presents a theory of valid inequalities for mixed integer linear sets. It introduces the necessary tools from polyhedral theory and gives a geometric understanding of several classical families of valid inequalities such as lift-and-project cuts, Gomory mixed integer cuts, mixed integer rounding cuts, split cuts and intersection cuts, and it reveals the relationships between these families. The tutorial also discusses computational aspects of generating the cuts and their strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andersen K., Cornuéjols G. and Li Y. (2005). Split closure and intersection cuts. Math. Program. A 102: 457–493

    Article  MATH  Google Scholar 

  2. Andersen K., Cornuéjols G. and Li Y. (2005). Reduce-and-split cuts: Improving the performance of mixed integer Gomory cuts. Manage. Sci. 51: 1720–1732

    Article  Google Scholar 

  3. Atamtürk, A.: Strong formulations of robust mixed 0–1 programming. Math. Program. (2006)

  4. Balas E. (1971). Intersection cuts—A new type of cutting planes for integer programming. Oper. Res. 19: 19–39

    Article  MATH  MathSciNet  Google Scholar 

  5. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points, GSIA Management Science Research Report MSRR, 348, Carnegie Mellon University (1974): published as invited paper in Discrete Appl. Math. 89, 1–44 (1998)

  6. Balas E. (1985). Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algebraic Discrete Methods 6: 466–486

    MATH  MathSciNet  Google Scholar 

  7. Balas E., Ceria S. and Cornuéjols G. (1993). A lift-and-project cutting plane algorithm for mixed 0-1 programs. Math. Program. 58: 295–324

    Article  Google Scholar 

  8. Balas E., Ceria S., Cornuéjols G. and Natraj R.N. (1996). Gomory cuts revisited. Oper. Res. Lett. 19: 1–9

    Article  MATH  MathSciNet  Google Scholar 

  9. Balas E. and Jeroslow R. (1980). Strengthening cuts for mixed integer programs. Euro. J. Oper. Res. 4: 224–234

    Article  MATH  MathSciNet  Google Scholar 

  10. Balas E. and Perregaard M. (2003). A Precise correspondence between lift-and-project cuts, simple disjunctive cuts and mixed integer Gomory cuts for 0-1 programming. Math. Program. B 94: 221–245

    Article  MATH  MathSciNet  Google Scholar 

  11. Balas, E., Saxena, A.: Optimizing over the split closure. Tepper School of Business Management Science Research Report MSRR 674, Carnegie Mellon University (2006)

  12. Bienstock D. and Zuckerberg M. (2004). Subset algebra lift operators for 0-1 integer programming. SIAM J. Optim. 15: 63–95

    Article  MATH  MathSciNet  Google Scholar 

  13. Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.P.: An updated mixed integer programming library: MIPLIB 3.0. Optima 58, 12–15 (1998)

    Google Scholar 

  14. Bixby, R.E., Gu, Z., Rothberg, E., Wunderling, R.: Mixed integer programming: a progress report, In: Grötschel, M. (ed.) The Sharpest Cut: The Impact of Manfred Padberg and his work, MPS/SIAM Series in Optimization pp. 309–326 (2004)

  15. Bonami, P.: Etude et mise en oeuvre d’approches polyédriques pour la résolution de programmes en nombres entiers ou mixtes généraux, PhD Thesis, Université de Paris 6 (2003)

  16. Bonami, P., Cornuéjols, G.: On MIR inequalities (2006)

  17. Bonami, P., Cornuéjols, G., Dash, S., Fischetti, M., Lodi, A.: Projected Chvátal-Gomory cuts for mixed integer linear programs, to appear in Math. Program. (2007)

  18. Bonami P. and Minoux M. (2005). Using rank-1 lift-and-project closures to generate cuts for 0–1 MIPs, a computational investigation. Discret. Optim. 2: 288–307

    Article  MathSciNet  MATH  Google Scholar 

  19. Burer S. and Vandenbussche D. (2006). Solving lift-and-project relaxations of binary integer programs. SIAM J. Optim. 16: 726–750

    Article  MATH  MathSciNet  Google Scholar 

  20. Caprara A. and Letchford A.N. (2003). On the separation of split cuts and related inequalities. Math. Program. B 94: 279–294

    Article  MATH  MathSciNet  Google Scholar 

  21. Chvátal V. (1973). Edmonds polytopes and a hierarchy of combinatorial optimization. Discret. Math. 4: 305–337

    Article  MATH  Google Scholar 

  22. Chvátal, V., Cook, W., Hartmann, M.: On cutting-plane proofs in combinatorial optimization. Linear Algebra Appl. 114–115, 455–499 (1989)

    Google Scholar 

  23. Conforti, M., Wolsey, L.: Compact formulations as a union of polyhedra. CORE discussion paper, Louvain-la-Neuve (2005)

  24. Cook W. and Dash S. (2001). On the matrix-cut rank of polyhedra. Math. Oper. Res. 26: 19–30

    Article  MATH  MathSciNet  Google Scholar 

  25. Cook W., Kannan R. and Schrijver A. (1990). Chvátal closures for mixed integer programming problems. Math. Program. 47: 155–174

    Article  MATH  MathSciNet  Google Scholar 

  26. Cornuéjols G. and Li Y. (2001). Elementary closures for integer programs. Oper. Res. Lett. 28: 1–8

    Article  MATH  MathSciNet  Google Scholar 

  27. Cornuéjols G. and Li Y. (2002). On the rank of mixed 0,1 polyhedra. Math. Program. A 91: 391–397

    Article  MATH  Google Scholar 

  28. Cornuéjols G. and Li Y. (2002). A connection between cutting plane theory and the geometry of numbers. Math. Program. A 93: 123–127

    Article  MATH  Google Scholar 

  29. Dash, S., Günlük, O., Lodi, A.: Separating from the MIR closure of polyhedra, presentation at the International Symposium on Mathematical Programming, Rio de Janeiro, Brazil, 2006, paper in preparation

  30. Eisenbrand F. (1999). On the membership problem for the elementary closure of a polyhedron. Combinatorica 19: 297–300

    Article  MATH  MathSciNet  Google Scholar 

  31. Fischetti, M., Lodi, A.: Optimizing over the first Chvátal closure. In: Jünger, M., Kaibel, V. (eds.) IPCO 2005, LNCS 3509, 12–22 (2005)

  32. Goemans M.X. and Tunçel L. (2001). When does the positive semidefiniteness constraint help in lifting procedures. Math. Oper. Res. 26: 796–815

    Article  MATH  MathSciNet  Google Scholar 

  33. Goemans M.X. and Williamson D.P. (1995). Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42: 1115–1145

    Article  MATH  MathSciNet  Google Scholar 

  34. Gomory, R.E.: An algorithm for integer solutions to linear programs. In: Graves, R.L., Wolfe, P. (eds.) Recent Advances in Mathematical Programming. McGraw-Hill, New York pp. 269–302 (1963)

  35. Gomory R.E. (1969). Some polyhedra related to combinatorial problems. Linear Algebra Appl. 2: 451–558

    Article  MATH  MathSciNet  Google Scholar 

  36. Gomory R.E. and Johnson E.L. (1972). Some continuous functions related to corner polyhedra I. Math. Program. 3: 23–85

    Article  MATH  MathSciNet  Google Scholar 

  37. Günlük O. and Pochet Y. (2001). Mixing mixed-integer inequalities. Math. Program. 90: 429–458

    Article  MATH  MathSciNet  Google Scholar 

  38. Köppe, M.: Louveaux, Q., Weismantel, R., Intermediate integer programming representations using value disjunctions, technical report, Department of Mathematics, University of Magdeburg (2005)

  39. Köppe M. and Weismantel R. (2004). A mixed-integer Farkas lemma and some consequences. Oper. Res. Lett. 32: 207–211

    Article  MATH  MathSciNet  Google Scholar 

  40. Lasserre J.B. (2001). An explicit exact SDP relaxation for nonlinear 0-1 program. Lect. Notes Comput. Sci. 2081: 293–303

    Article  MathSciNet  Google Scholar 

  41. Laurent M. (2003). A comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre relaxation for 0-1 programming. SIAM J. Optim. 28: 345–375

    Google Scholar 

  42. Lenstra A.K., Lenstra H.W. and Lovász L. (1982). Factoring polynomials with rational coefficients. Math. Ann. 261: 515–534

    Article  MATH  MathSciNet  Google Scholar 

  43. Lovász L. and Schrijver A. (1991). Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1: 166–190

    Article  MATH  MathSciNet  Google Scholar 

  44. Marchand H. and Wolsey L.A. (2001). Aggregation and mixed integer rounding to solve MIPs. Oper. Res. 49: 363–371

    Article  MathSciNet  MATH  Google Scholar 

  45. Miller A. and Wolsey L.A. (2003). Tight formulations for some simple MIPs and convex objective IPs. Math. Program. B 98: 73–88

    Article  MATH  MathSciNet  Google Scholar 

  46. Nemhauser G.L. and Wolsey L.A. (1988). Integer and Combinatorial Optimization. Wiley, New York

    MATH  Google Scholar 

  47. Nemhauser G.L. and Wolsey L.A. (1990). A recursive procedure to generate all cuts for 0-1 mixed integer programs. Math. Program. 46: 379–390

    Article  MATH  MathSciNet  Google Scholar 

  48. Nesterov, Y.E., Nemirovski, A.S.: Interior Point Polynomial Algorithms in Convex Programming. SIAM Publications, SIAM, Philadelphia (1994)

  49. Owen J.H. and Mehrotra S. (2002). On the value of binary expansions for general mixed-integer linear programs. Oper. Res. 50: 810–819

    Article  MathSciNet  MATH  Google Scholar 

  50. Perregaard, M.: A practical implementation of lift-and-project cuts: A computational exploration of lift-and-project cuts with XPRESS-MP, 18th ISMP, Copenhagen (2003)

  51. Roy, J.-S.: Binarize and project to generate cuts for general mixed-integer programs, technical report. EDF R&D, Clamart (2006)

  52. Schrijver A. (1980). On cutting planes. Ann. Discrete Math. 9: 291–296

    Article  MATH  MathSciNet  Google Scholar 

  53. Schrijver A. (1986). Theory of Linear and Integer Programming. Wiley, New York

    MATH  Google Scholar 

  54. Sherali H. and Adams W. (1990). A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3: 311–430

    Article  MathSciNet  Google Scholar 

  55. Sherali, H., Adams, W.: A reformulation-linearization technique for solving discrete and continuous nonconvex problems. Chap. 4, Kluwer, Norwell (1999)

  56. Van Vyve M. (2005). The continuous mixing polyhedron. Math. Oper. Res. 30: 441–452

    Article  MATH  MathSciNet  Google Scholar 

  57. Wolsey, L.A.: Integer Programming (1999)

  58. Ziegler G.M. (1995). Lectures on Polytopes. Springer, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Cornuéjols.

Additional information

Supported by NSF grant DMI-0352885, ONR grant N00014-03-1-0188 and ANR grant BLAN06-1-138894.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornuéjols, G. Valid inequalities for mixed integer linear programs. Math. Program. 112, 3–44 (2008). https://doi.org/10.1007/s10107-006-0086-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0086-0

Keywords

Mathematics Subject Classification (2000)

Navigation