Mathematical Programming

, Volume 111, Issue 1–2, pp 33–56 | Cite as

Markovian traffic equilibrium

  • J.-B. Baillon
  • R. CominettiEmail author


We analyze an equilibrium model for traffic networks based on stochastic dynamic programming. In this model passengers move towards their destinations by a sequential process of arc selection based on a discrete choice model at every intermediate node in their trip. Route selection is the outcome of this sequential process while network flows correspond to the invariant measures of the underlying Markov chains. The approach may handle different discrete choice models at every node, including the possibility of mixing deterministic and stochastic distribution rules. It can also be used over a multi-modal network in order to model the simultaneous selection of mode and route, as well as to treat the case of elastic demands. We establish the existence of a unique equilibrium, which is characterized as the solution of an unconstrained strictly convex minimization problem of low dimension. We report some numerical experiences comparing the performance of the method of successive averages (MSA) and Newton’s method on one small and one large network, providing a formal convergence proof for MSA.


Traffic equilibrium Stochastic assignment Variational formulations Numerical computation 

Mathematics Subject Classification (2000)

90B15 90B20 90C40 90C90 90C25 65K10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahuja, R.K., Magnanti, Th.L., Orlin, J.B.: Network flows. In: Nemhauser, G.L. et al (eds.) Handbooks in Operations Research and Management Science, Vol. 1 Optimization, North-Holland, Amsterdam (1989)Google Scholar
  2. 2.
    Akamatsu T. (1996). Cyclic flows, Markov processes and stochastic traffic assignment. Transport. Res. B 30(5): 369–386 CrossRefGoogle Scholar
  3. 3.
    Akamatsu T. (1997). Decomposition of path choice entropy in general transportation networks. Transport. Sci. 31: 349–362 zbMATHGoogle Scholar
  4. 4.
    Alvarez F., Bolte J., Brahic O. (2004). Hessian Riemannian gradient flows in convex programming. SIAM J. Control Optim. 43(2): 477–501 zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Beckman M., McGuire C., Winsten C. (1956). Studies in Economics of Transportation. Yale University Press, New Haven Google Scholar
  6. 6.
    Bell M.G.H. (1995). Alternatives to Dial’s logit assignment algorithm. Transport. Res. 29B(4): 287–296 CrossRefGoogle Scholar
  7. 7.
    Ben-Akiva M.E., Lerman S.R. (1985). Discrete Choice Analysis: Theory and Application to Travel Demand. MIT Press, Cambridge Google Scholar
  8. 8.
    Cantarella G., Cascetta E. (1995). Dynamic processes and equilibrium in transportation networks: towards a unifying theory. Transport. Sci. 29: 305–329 zbMATHGoogle Scholar
  9. 9.
    Cascetta E. (1989). A stochastic process approach to the analysis of temporal dynamics in transportation networks. Transport. Res. 23B: 1–17 CrossRefGoogle Scholar
  10. 10.
    Daganzo C.F. (1979). Multinomial Probit: the Theory and Its Applications to Demand Forecasting. Academic Press, New York Google Scholar
  11. 11.
    Daganzo C.F. (1982). Unconstrained extremal formulation of some transportation equilibrium problems. Transport. Sci. 16: 332–360 MathSciNetGoogle Scholar
  12. 12.
    Daganzo C.F., Sheffi Y. (1977). On stochastic models of traffic assignment. Transport. Sci. 11: 253–274 Google Scholar
  13. 13.
    Dial R.B. (1971). A probabilistic multipath traffic assignment model which obviates path enumeration. Transport. Res. 5: 83–111 CrossRefGoogle Scholar
  14. 14.
    Fisk C. (1980). Some developments in equilibrium traffic assignment. Transport. Res. 14B: 243–255 CrossRefMathSciNetGoogle Scholar
  15. 15.
    Florian, M., Hearn, D.: Network equilibrium models and algorithms. In: Hall, M.O. et al. (eds.) Handbooks in Operation Research and Management Science, Vol. 8, Chapter 6. North Holland, Amsterdam (1995)Google Scholar
  16. 16.
    Florian M., Hearn D. (1999). Network equilibrium and pricing. In: Hall, R.W. (eds) Handbook of Transportation Science, pp 361–393. Kluwer, Norwell Google Scholar
  17. 17.
    Fukushima M. (1984). On the dual approach to the traffic assignment problem. Transport. Res. B 18(3): 235–245 CrossRefMathSciNetGoogle Scholar
  18. 18.
    Hazelton M.L. (2002). Day-to-day variation in Markovian traffic assignment models. Transport. Res. B 36: 637–648 CrossRefGoogle Scholar
  19. 19.
    Larsson T., Liu Z., Patriksson M. (1997). A dual scheme for traffic assignment problems. Optimization 42(4): 323–358 zbMATHMathSciNetGoogle Scholar
  20. 20.
    Leurent F.M. (1996). Contribution to logit assignment model. Transport. Res. Rec. 1493: 207–212 Google Scholar
  21. 21.
    Maher M. (1998). Algorithms for logit-based stochastic user equilibrium assignment. Transport. Res. B 32: 539–549 CrossRefGoogle Scholar
  22. 22.
    Mastroenni G. (2002). A Markov chain model for traffic equilibrium problems. RAIRO Oper. Res. 36: 209–226 CrossRefMathSciNetGoogle Scholar
  23. 23.
    Miyagi, T.: On the formulation of a stochastic user equilibrium model consistent with random utility theory. In: Proceedings of the 4th World Conference for Transportation Research, pp. 1619–1635 (1985)Google Scholar
  24. 24.
    San Martí n, J.: Personal communication (2003)Google Scholar
  25. 25.
    Sheffi Y., Powell W. (1982). An algorithm for the equilibrium assignment with random link times. Networks 12: 191–207 zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Sheffi Y., Daganzo C.F. (1978). Another paradox of traffic flow. Transport. Res. 12: 43–46 CrossRefGoogle Scholar
  27. 27.
    Shor, N.Z.: Minimization methods for non-differentiable functions. Springer Series in Computational Mathematics, Springer, Berlin Heidelberg New York (1985)Google Scholar
  28. 28.
    Trahan M. (1974). Probabilistic assignment: an algorithm. Transport. Sci. 8: 311–320 CrossRefGoogle Scholar
  29. 29.
    Wardrop, J.G.: Some theoretical aspects of road traffic research. In: Proceedings of the Institute of Civil Engineers Part II, pp. 325–378 (1952)Google Scholar
  30. 30.
    Watling D.P., Hazelton M.L. (2003). The dynamics and equilibria of day-to-day assignment models. Netwo. Spatial Econ. 3: 349–370 CrossRefGoogle Scholar
  31. 31.
    Williams H.C.W.L. (1977). On the formulation of travel demand models and economic evaluation measures of user benefit. Environ. Plann. A 9: 285–344 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Université de Paris I, UFR Mathématiques, Laboratoire Marin MersenneParisFrance
  2. 2.Departamento de Ingeniería MatemáticaUniversidad de ChileSantiagoChile

Personalised recommendations