Mathematical Programming

, Volume 111, Issue 1–2, pp 173–199 | Cite as

A family of projective splitting methods for the sum of two maximal monotone operators

  • Jonathan Eckstein
  • B. F. Svaiter


A splitting method for two monotone operators A and B is an algorithm that attempts to converge to a zero of the sum A + B by solving a sequence of subproblems, each of which involves only the operator A, or only the operator B. Prior algorithms of this type can all in essence be categorized into three main classes, the Douglas/Peaceman-Rachford class, the forward-backward class, and the little-used double-backward class. Through a certain “extended” solution set in a product space, we construct a fundamentally new class of splitting methods for pairs of general maximal monotone operators in Hilbert space. Our algorithms are essentially standard projection methods, using splitting decomposition to construct separators. We prove convergence through Fejér monotonicity techniques, but showing Fejér convergence of a different sequence to a different set than in earlier splitting methods. Our projective algorithms converge under more general conditions than prior splitting methods, allowing the proximal parameter to vary from iteration to iteration, and even from operator to operator, while retaining convergence for essentially arbitrary pairs of operators. The new projective splitting class also contains noteworthy preexisting methods either as conventional special cases or excluded boundary cases.

Mathematics Subject Classification (2000)

47H05 90C25 49M27 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauschke H.H. and Borwein J.M. (1996). On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3): 367–426 zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bauschke H.H., Combettes P.L. and Reich S. (2005). The asymptotic behavior of the composition of two resolvents. Nonlin. Anal. 60(2): 283–301 zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Browder F.E. (1965). Multi-valued monotone nonlinear mappings and duality mappings in Banach spaces. Trans. Am. Math. Soc. 118: 338–351 zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Browder F.E. (1968). Nonlinear maximal monotone operators in Banach space. Math. Ann. 175: 89–113 zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cimmino G. (1938). Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari. Ric. Sci. Progr. Tecn. Econ. Naz. 1: 326–333 Google Scholar
  6. 6.
    Combettes P.L. (2004). Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5–6): 475–504 zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Eckstein J. (1994). Some saddle-function splitting methods for convex programming. Optim. Meth. Softw. 4(1): 75–83 Google Scholar
  8. 8.
    Eckstein J. and Bertsekas D.P. (1992). On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(3): 293–318 zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Eckstein J. and Ferris M.C. (1998). Operator-splitting methods for monotone affine variational inequalities, with a parallel application to optimal control. INFORMS J. Comput. 10(2): 218–235 zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Solution of Boundary Value Problems, chap. IX, pp. 299–340. North-Holland, Amsterdam (1983)Google Scholar
  11. 11.
    Kaczmarz S. (1937). Angenäherte auflösung von systemen linearer gleichungen. Bull. Int. Acad. Pol. Sci. A. 1937: 355–357 Google Scholar
  12. 12.
    Kaczmarz, S.: Approximate solution of systems of linear equations. Int. J. Control. 57(6), 1269–1271 (1993) (Translated from the German)Google Scholar
  13. 13.
    Lawrence J. and Spingarn J.E. (1987). On fixed points of nonexpansive piecewise isometric mappings. Proc. Lond. Math. Soc. 55(3): 605–624 zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Lions P.-L. (1978). Une méthode itérative de résolution d’une inéquation variationnelle. Isr. J. Math. 31(2): 204–208 zbMATHGoogle Scholar
  15. 15.
    Lions P.-L. and Mercier B. (1979). Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6): 964–979 zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Minty G.J. (1962). Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29: 341–346 zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Passty G.B. (1979). Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72(2): 383–390 zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Rockafellar R.T. (1970). On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149: 75–88 zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Solodov M.V. and Svaiter B.F. (1999). A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Anal. 7(4): 323–345 zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Solodov M.V. and Svaiter B.F. (1999). A hybrid projection-proximal point algorithm. J. Convex Anal. 6(1): 59–70 zbMATHMathSciNetGoogle Scholar
  21. 21.
    Solodov M.V. and Svaiter B.F. (2000). Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program. 87(1): 189–202 zbMATHMathSciNetGoogle Scholar
  22. 22.
    Spingarn J.E. (1983). Partial inverse of a monotone operator. Appl. Math. Optim. 10(3): 247–265 zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Tseng P. (2000). A modified forward–backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38(2): 431–446 zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Business School (Department of Management Science and Information Systems) and RUTCORRutgers UniversityPiscatawayUSA
  2. 2.IMPAInstituto de Matemática Pura e AplicadaRio de JaneiroBrazil

Personalised recommendations