Mathematical Programming

, Volume 111, Issue 1–2, pp 273–300 | Cite as

Incomplete oblique projections for solving large inconsistent linear systems

  • H. D. Scolnik
  • N. Echebest
  • M. T. Guardarucci
  • M. C. Vacchino


The authors introduced in previously published papers acceleration schemes for Projected Aggregation Methods (PAM), aiming at solving consistent linear systems of equalities and inequalities. They have used the basic idea of forcing each iterate to belong to the aggregate hyperplane generated in the previous iteration. That scheme has been applied to a variety of projection algorithms for solving systems of linear equalities or inequalities, proving that the acceleration technique can be successfully used for consistent problems. The aim of this paper is to extend the applicability of those schemes to the inconsistent case, employing incomplete projections onto the set of solutions of the augmented system Axr = b. These extended algorithms converge to the least squares solution. For that purpose, oblique projections are used and, in particular, variable oblique incomplete projections are introduced. They are defined by means of matrices that penalize the norm of the residuals very strongly in the first iterations, decreasing their influence with the iteration counter in order to fulfill the convergence conditions. The theoretical properties of the new algorithms are analyzed, and numerical experiences are presented comparing their performance with several well-known projection methods.


Projected Aggregation Methods Incomplete projections Inconsistent system 

Mathematics Subject Classification (2000)

90C25 90C30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Browne, J.A., Herman, G.T., Odhner, D.: SNARK93: A Programming System for Image Reconstruction from Projections. Department of Radiology, University of Pennsylvania, Medical Image Processing Group, Technical Report MIPG198 (1993)Google Scholar
  2. 2.
    Byrne C. (2002). Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18: 441–453 zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Byrne C. and Censor Y. (2001). Proximity function minimization using multiple Bregman projections with applications to split feasibility and Kullback–Leibler distance minimization. Ann. Oper. Res. 105: 77–98 zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Censor Y. and Elfving T. (2002). Block-iterative algorithms with diagonally scaled oblique projections for the linear feasibility problem. SIAM J. Matrix Anal. Appl. 24: 40–58 zbMATHMathSciNetGoogle Scholar
  5. 5.
    Censor Y. and Zenios S. (1997). Parallel Optimization: Theory and Applications. Oxford University Press, New York zbMATHGoogle Scholar
  6. 6.
    Censor Y., Gordon D. and Gordon R. (2001). Component averaging: an efficient iterative parallel algorithm for large and sparse unstructured problems. Parallel Comput. 27: 777–808 zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Combettes P.L. (1994). Inconsistent signal feasibility problems: least-squares solutions in a product space. IEEE Trans. Signal Process. 42: 2955–2966 CrossRefGoogle Scholar
  8. 8.
    Csiszár I. and Tusnády G. (1984). Information geometry and alternating minimization procedures. Stat. Decis. Suppl. 1: 205–237 Google Scholar
  9. 9.
    Echebest N., Guardarucci M.T., Scolnik H.D. and Vacchino M.C. (2004). An acceleration scheme for solving convex feasibility problems using incomplete projection algorithms. Numer. Algorithms 35(2–4): 335–350 MathSciNetGoogle Scholar
  10. 10.
    García Palomares U.M. (1993). Parallel projected aggregation methods for solving the convex feasibility problem. SIAM J. Optim. 3: 882–900 zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Herman G.T. (1980). Image Reconstruction From Projections: The Fundamentals of Computarized Tomography. Academic, New York Google Scholar
  12. 12.
    Herman G.T. and Meyer LB (1993). Algebraic reconstruction techniques can be made computationally efficient. IEEE Trans. Med. Imaging 12: 600–609 CrossRefGoogle Scholar
  13. 13.
    Householder A.S. and Bauer F.L. (1960). On certain iterative methods for solving linear systems. Numer. Math. 2: 55–59 zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Jiang M. and Wang G. (2003). Convergence studies on iterative Algorithms for Image Reconstruction. IEEE Trans. Med. Imaging 22: 569–579 CrossRefGoogle Scholar
  15. 15.
    Kaczmarz S. (1937). Angenäherte Auflösung von Systemen linearer Gleichungen. Bull. Int. Acad. Pol. Sci. Lett. 35: 355–357 Google Scholar
  16. 16.
    Landweber L. (1951). An iteration formula for Fredholm integral equations of the first kind. Am. J. Math. 73: 615–624 zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Ortega J.M. and Rheinboldt W.C. (1970). Iterative Solution of Nonlinear Equations in Several Variables. Academic, New York, London zbMATHGoogle Scholar
  18. 18.
    Popa C. (1998). Extensions of Block-Projections methods with relaxation parameters to inconsistent and rank-deficient least-squares problems. BIT 38: 151–176 zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Scolnik, H.D., Echebest, N., Guardarucci, M.T., Vacchino, M.C.: New optimized and accelerated PAM methods for solving large non-symmetric linear systems: theory and practice. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and their Applications, Studies in Computational Mathematics, vol. 8, pp. 457–470. Elsevier Science Publishers, Amsterdam, The Netherlands (2001)Google Scholar
  20. 20.
    Scolnik H.D., Echebest N., Guardarucci M.T. and Vacchino M.C. (2002). A class of optimized row projection methods for solving large non-symmetric linear systems. Appl. Numer. Math. 41: 499–513 zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Scolnik H.D., Echebest N., Guardarucci M.T. and Vacchino M.C. (2002). Acceleration scheme for Parallel Projected Aggregation Methods for solving large linear systems. Ann. Oper. Res. 117: 95–115 zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • H. D. Scolnik
    • 1
  • N. Echebest
    • 2
  • M. T. Guardarucci
    • 2
  • M. C. Vacchino
    • 2
  1. 1.Departamento de Computación, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Departamento de Matemática, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations