Mathematical Programming

, Volume 111, Issue 1–2, pp 315–348 | Cite as

A path to the Arrow–Debreu competitive market equilibrium

FULL LENGTH PAPER

Abstract

We present polynomial-time interior-point algorithms for solving the Fisher and Arrow–Debreu competitive market equilibrium problems with linear utilities and n players. Both of them have the arithmetic operation complexity bound of \({O(n^{4}log(1/\epsilon}\))) for computing an \({\epsilon}\) -equilibrium solution. If the problem data are rational numbers and their bit-length is L, then the bound to generate an exact solution is O(n4L) which is in line with the best complexity bound for linear programming of the same dimension and size. This is a significant improvement over the previously best bound \(O(n^{8}log(1/\epsilon\))) for approximating the two problems using other methods. The key ingredient to derive these results is to show that these problems admit convex optimization formulations, efficient barrier functions and fast rounding techniques. We also present a continuous path leading to the set of the Arrow–Debreu equilibrium, similar to the central path developed for linear programming interior-point methods. This path is derived from the weighted logarithmic utility and barrier functions and the Brouwer fixed-point theorem. The defining equations are bilinear and possess some primal-dual structure for the application of the Newton-based path-following method.

Mathematics Subject Classifications

91B50 90C25 90C51 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arrow K. and Debreu G. (1954). Existence of a competitive equilibrium for a competitive economy. Econometrica 22(3): 265–290 MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Atkinson D.S. and Vaidya P.M. (1992). A scaling technique for finding the weighted analytic center of a polytope.. Math. Program. 57: 163–192 CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Brainard, W.C., Scarf, H.E.: How to compute equilibrium prices in 1891. Cowles Foundation Discussion Paper 1270, August (2000)Google Scholar
  4. 4.
    Codenotti, B., Varadarajan, K.: Efficient computation of equilibrium prices for market with Leontief utilities. In: Proc. of ICALP 2004, pp. 371–381 (2004)Google Scholar
  5. 5.
    Codenotti, B., Pemmaraju, S., Varadarajan, K.: On the polynomial time computation of equilibria for certain exchange economies. In: Proc of SODA 2005, pp. 72–81 (2005)Google Scholar
  6. 6.
    Cottle, R., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem, Chap. 5.9: Interior–point methods, pp. 461–475. Academic Boston (1992)Google Scholar
  7. 7.
    Deng, X., Huang, S., Ye, Y.: Computation of the Arrow–Debreu equilibrium for a class of non-homogenous utility functions. Technical Report, State Key Laboratory of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing, 10084, ChinaGoogle Scholar
  8. 8.
    Deng, X., Papadimitriou, C.H., Safra, S.: On the complexity of equilibria. In: Proc. of ACM Symposium on Theory of Computing 2002, pp. 67–71 (2002)Google Scholar
  9. 9.
    Devanur, N.R., Papadimitriou, C.H., Saberi, A., Vazirani, V.V.: Market equilibrium via a primal-dual-type algorithm. In: Proc. of The 43rd Annual IEEE Symposium on Foundations of Computer Science 2002, pp. 389–395; journal version on http://www.cc.gatech.edu/~saberi/ (2004)Google Scholar
  10. 10.
    Dirkse S.P. and Ferris M.C. (1996). A pathsearch damped Newton method for computing general equilibria. Ann. Oper. Res. 68: 211–232 MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Eisenberg E. and Gale D. (1959). Consensus of subjective probabilities: the pari-mutuel method. Ann. Mathe. Statist. 30: 165–168 MathSciNetMATHGoogle Scholar
  12. 12.
    Eaves B.C. (1976). A finite algorithm for the linear exchange model. J. Math. Econ. 3: 197–203 MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Eaves B.C. (1985). Finite solution of pure trade markets with Cobb-Douglas utilities. Math. Program. Study 23: 226–239 MATHMathSciNetGoogle Scholar
  14. 14.
    Esteban-Bravo M. (2004). Computing equilibria in general equilibrium models via interior-point methods. Comput. Econ. 23(2): 147–171 MATHCrossRefGoogle Scholar
  15. 15.
    Ferris M.C. and Pang J.S. (1997). Engineering and economic applications of complementarity problems. SIAM Rev. 39(4): 669–713 MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Gale, D.: The Theory of Linear Economic Models. McGraw Hill, New York (1960)Google Scholar
  17. 17.
    Ginsburgh, V., Keyzer, M.: The Structure of Applied General Equilibrium Models. The MIT Press, Cambridge (1077)Google Scholar
  18. 18.
    Güler O. (1993). Existence of interior points and interior paths in nonlinear monotone complementarity problems. Math. Oper. Res. 18(1): 128–147 MATHMathSciNetGoogle Scholar
  19. 19.
    Jain, K.: A polynomial time algorithm for computing the Arrow–Debreu market equilibrium for linear utilities. In: Proc. of The 43rd Annual IEEE Symposium on Foundations of Computer Science 2004, pp. 286–294 (2004)Google Scholar
  20. 20.
    Jain, K., Mahdian, M., Saberi, A.: Approximating market equilibria. In: Proc. of APPROX 2003, pp. 98–108 (2003)Google Scholar
  21. 21.
    Jain, K., Vazirani, V.V., Ye, Y.: Market equilibria for homothetic, quasi-concave utilities and economies of scale in production. In: Proc. of SODA 2005, pp. 63–71 (2005)Google Scholar
  22. 22.
    Kojima M., Mizuno S. and Yoshise A. (1991). Math. Program. 50: 331–342 MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Kojima, M., Megiddo, N., Noma, T., Yoshise, A.: A unified approach for interior-point algorithms for linear complementarity problems. Lecture Notes in Computer Science, vol. 538. Springer, Berlin Heidelberg New York (1991)Google Scholar
  24. 24.
    Megiddo N. (1989). Pathways to the optimal set in linear programming. In: Megiddo, N. (eds) Progress in Mathematical Programming Interior Point and Related Methods, pp 131–158. Springer, Berlin Heidelberg New York Google Scholar
  25. 25.
    Mehrotra S. and Ye Y. (1993). On finding an interior point on the optimal face of linear programs. Math. Program. 62: 497–516 CrossRefMathSciNetGoogle Scholar
  26. 26.
    Mizuno S., Todd M.J. and Ye Y. (1993). On adaptive step primal–dual interior–point algorithms for linear programming.. Math. Oper. Res. 18: 964–981 MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Monteiro R.D.C. and Adler I. (1989). Interior path following primal–dual algorithms: Part I : Linear programming. Math. Program. 44: 27–41 MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Monteiro R.D.C. and Tsuchiya T. (2004). A new iteration-complexity bound for the MTY predictor- corrector algorithm. SIAM J. Optim. 15(2): 319–347 MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Negishi T. (1960). Welfare economics and the existence of an equilibrium for a competitive economy. Metroeconomica, XII: 92–97 CrossRefGoogle Scholar
  30. 30.
    Nenakhov E. and Primak M. (1983). About one algorithm for finding the solution of the Arrow–Debreu model.. Kibernetica 3: 127–128 Google Scholar
  31. 31.
    Nesterov Yu.E. and Nemirovskii A.S. (1993). Interior Point Polynomial Methods in Convex Programming: Theory and Algorithms. SIAM Publications, SIAM, Philadelphia Google Scholar
  32. 32.
    Primak M.E. (1993). A converging algorithm for a linear exchange model.. J. Math. Econ. 22(2): 181–187 MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Rutherford T.F. (1999). Applied general equilibrium modeling with MPSGE as a GAMS subsystem. Comput. Econ. 14: 1–46 MATHCrossRefGoogle Scholar
  34. 34.
    Scarf, H.E.: The Computation of Economic Equilibria (with collaboration of T. Hansen, Cowles Foundation Monograph, No. 24. Yale University Press, New Haven (1973)Google Scholar
  35. 35.
    Todd, M.J.: The computation of fixed points and applications. (Lecture Notes in Economics and Mathematical Systems, vol. 124. Springer, Berlin Heidelberg New York (1976)Google Scholar
  36. 36.
    Walras, L.: Elements of Pure Economics, or the Theory of Social Wealth 1874 (1899, 4th ed.; 1926, rev ed., 1954, Engl. Transl.)Google Scholar
  37. 37.
    Yang Z. (1999). Computing Equilibria and Fixed Points: The Solution of Nonlinear Inequalities. Kluwer, Boston MATHGoogle Scholar
  38. 38.
    Ye Y., Güler O., Tapia R.A. and Zhang Y. (1993). Math. Program. 59: 151–162 CrossRefGoogle Scholar
  39. 39.
    Ye Y. (1997). Interior Point Algorithms: Theory and Analysis. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Management Science and EngineeringStanford UniversityStanfordUSA

Personalised recommendations