Mathematical Programming

, Volume 113, Issue 1, pp 1–14 | Cite as

How good are interior point methods? Klee–Minty cubes tighten iteration-complexity bounds

FULL LENGTH PAPER

Abstract

By refining a variant of the Klee–Minty example that forces the central path to visit all the vertices of the Klee–Minty n-cube, we exhibit a nearly worst-case example for path-following interior point methods. Namely, while the theoretical iteration-complexity upper bound is \(O(2^{n}n^{\frac{5}{2}})\), we prove that solving this n-dimensional linear optimization problem requires at least 2n−1 iterations.

Keywords

Linear programming Interior point method Worst-case iteration-complexity 

Mathematics Subject Classification (2000)

Primary 90C05 Secondary 90C51 Secondary 90C27 Secondary 52B12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dantzig G.B. (1951) Maximization of a linear function of variables subject to linear inequalities. In: Koopmans T.C. (ed) Activity Analysis of Production and Allocation. Wiley, New York, pp. 339–347Google Scholar
  2. 2.
    Deza A., Nematollahi E., Peyghami R., Terlaky T. (2006) The central path visits all the vertices of the Klee–Minty cube. Optim. Methods Softw. 21–5, 851–865Google Scholar
  3. 3.
    Deza, A., Terlaky, T., Zinchenko, Y.: Polytopes and arrangements: diameter and curvature. AdvOL-Report 2006/09, McMaster University (2006)Google Scholar
  4. 4.
    Karmarkar N.K. (1984) A new polynomial-time algorithm for linear programming. Combinatorica 4, 373–395MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Khachiyan L.G. (1979) A polynomial algorithm in linear programming. Soviet Math. Doklady 20, 191–194MATHGoogle Scholar
  6. 6.
    Klee V., Minty G.J. (1972) How good is the simplex algorithm?. In: Shisha O. (ed) Inequalities III. Academic, New York, pp. 159–175Google Scholar
  7. 7.
    Megiddo, N.: Pathways to the optimal set in linear programming. In: Megiddo, N. (ed.) Progress in Mathematical Programming: Interior-Point and Related Methods. Springer, Berlin Heidelberg New York pp. 131–158 (1988); also in: Proceedings of the 7th Mathematical Programming Symposium of Japan, pp. 1–35. Nagoya, Japan (1986)Google Scholar
  8. 8.
    Megiddo N., Shub M. Boundary behavior of interior point algorithms in linear programming. Math. Oper. Res. 14–1, 97–146 (1989)Google Scholar
  9. 9.
    Roos, C., Terlaky, T., Vial, J.-Ph.: Theory and algorithms for linear optimization: an interior point approach. In: Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1997)Google Scholar
  10. 10.
    Sonnevend, G.: An “analytical centre” for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming. In: Prékopa, A., Szelezsán, J., Strazicky, B. (eds.) System Modelling and Optimization: Proceedings of the 12th IFIP-Conference, Budapest 1985. Lecture Notes in Control and Information Sciences, Springer, Berlin Heidelberg New York Vol. 84, pp. 866–876 (1986)Google Scholar
  11. 11.
    Terlaky T., Zhang S. (1993) Pivot rules for linear programming – a survey. Ann. Oper. Res. 46, 203–233CrossRefMathSciNetGoogle Scholar
  12. 12.
    Todd M., Ye Y. (1996) A lower bound on the number of iterations of long-step and polynomial interior-point linear programming algorithms. Ann. Oper. Res. 62, 233–252MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Vavasis S., Ye Y. (1996) A primal-dual interior-point method whose running time depends only on the constraint matrix. Math. Programm. 74, 79–120MathSciNetGoogle Scholar
  14. 14.
    Wright S.J. (1997) Primal-Dual Interior-Point Methods. SIAM Publications, PhiladelphiaMATHGoogle Scholar
  15. 15.
    Ye Y. (1997) Interior-Point Algorithms: Theory and Analysis. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Antoine Deza
    • 1
  • Eissa Nematollahi
    • 1
  • Tamás Terlaky
    • 1
  1. 1.Advanced Optimization Laboratory, Department of Computing and SoftwareMcMaster UniversityHamiltonCanada

Personalised recommendations