Mathematical Programming

, Volume 109, Issue 2–3, pp 613–624 | Cite as

Reduction of symmetric semidefinite programs using the regular \(\ast\)-representation

  • Etienne de Klerk
  • Dmitrii V. Pasechnik
  • Alexander Schrijver


We consider semidefinite programming problems on which a permutation group is acting. We describe a general technique to reduce the size of such problems, exploiting the symmetry. The technique is based on a low-order matrix \(*\)-representation of the commutant (centralizer ring) of the matrix algebra generated by the permutation matrices. We apply it to extending a method of de Klerk et al. that gives a semidefinite programming lower bound to the crossing number of complete bipartite graphs. It implies that cr(K 8,n ) ≥ 2.9299n 2 − 6n, cr(K 9,n ) ≥ 3.8676n 2 − 8n, and (for any m ≥ 9)
$$\lim_{n\to\infty}\frac{{\rm cr}(K_{m,n})}{Z(m,n)}\geq 0.8594\frac{m}{m-1},$$
where Z(m,n) is the Zarankiewicz number \(\lfloor\frac{1}{4}(m-1)^2\rfloor\lfloor\frac{1}{4}(n-1)^2\rfloor\), which is the conjectured value of cr(K m,n ). Here the best factor previously known was 0.8303 instead of 0.8594.


Crossing numbers Complete bipartite graph Semidefinite programming Regular \(*\)-representations 

Mathematics Subject Classification (2000)

90C22 20B40 05C10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borchers B. (1999) CSDP, a C library for semidefinite programming. Optim. Methods Softw. 11, 613–623MathSciNetGoogle Scholar
  2. 2.
    Brouwer A.E., Cohen A.M., Neumaier A. (1989) Distance-regular graphs. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  3. 3.
    Burrow M. (1965) Representation Theory of Finite Groups. Academic, New YorkzbMATHGoogle Scholar
  4. 4.
    Gatermann K., Parrilo P.A. (2004) Symmetry groups, semidefinite programs, and sums of squares. J. Pure Appl. Algebra 192, 95–128CrossRefMathSciNetGoogle Scholar
  5. 5.
    Kanno Y., Ohsaki M., Murota K., Katoh N. (2001) Group symmetry in interior-point methods for semidefinite programming. Optim. Eng. 2, 293–320CrossRefMathSciNetGoogle Scholar
  6. 6.
    Kleitman D.J. (1970) The crossing number of K 5,n. J. Comb. Theory 9: 315–323MathSciNetGoogle Scholar
  7. 7.
    de Klerk E., Maharry J., Pasechnik D.V., Richter R.B., Salazar G. (2006) Improved bounds for the crossing numbers of K m,n and K n. SIAM J. Discret Math. 20, 189–202CrossRefGoogle Scholar
  8. 8.
    Laurent, M.: Strengthened semidefinite programming bounds for codes. Math. Program. Ser. B, (this issue)Google Scholar
  9. 9.
    Schrijver A. (2005) New code upper bounds from the Terwilliger algebra and semidefinite programming. IEEE Trans. Inf. Theory 51, 2859–2866CrossRefMathSciNetGoogle Scholar
  10. 10.
    Takesaki M. (1979) Theory of Operator Algebras I. Springer, Berlin Heidelberg New YorkzbMATHGoogle Scholar
  11. 11.
    Woodall D.R. (1993) Cyclic-order graphs and Zarankiewicz’s crossing-number conjecture. J. Graph Theory 17, 657–671MathSciNetGoogle Scholar
  12. 12.
    Zarankiewicz K. (1954) On a problem of P. Turán concerning graphs. Fundam. Math. 41, 137–145MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Etienne de Klerk
    • 1
  • Dmitrii V. Pasechnik
    • 1
  • Alexander Schrijver
    • 2
  1. 1.Department of Econometrics and Operations Research, Faculty of Economics and Business AdministrationTilburg UniversityLE TilburgThe Netherlands
  2. 2.CWI and University of Amsterdam. CWIAmsterdamThe Netherlands

Personalised recommendations