Mathematical Programming

, Volume 109, Issue 2–3, pp 553–580 | Cite as

Large-scale semidefinite programs in electronic structure calculation

  • Mituhiro Fukuda
  • Bastiaan J. Braams
  • Maho Nakata
  • Michael L. Overton
  • Jerome K. Percus
  • Makoto Yamashita
  • Zhengji Zhao
FULL LENGTH PAPER

Abstract

It has been a long-time dream in electronic structure theory in physical chemistry/chemical physics to compute ground state energies of atomic and molecular systems by employing a variational approach in which the two-body reduced density matrix (RDM) is the unknown variable. Realization of the RDM approach has benefited greatly from recent developments in semidefinite programming (SDP). We present the actual state of this new application of SDP as well as the formulation of these SDPs, which can be arbitrarily large. Numerical results using parallel computation on high performance computers are given. The RDM method has several advantages including robustness and provision of high accuracy compared to traditional electronic structure methods, although its computational time and memory consumption are still extremely large.

Keywords

Large-scale optimization Computational chemistry Semidefinite programming relaxation Reduced density Matrix N-representability Parallel computation 

Keywords

90C06 81Q05 90C22 68W10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blackford, L.S., Choi, J., Cleary, A., D’Azevedo E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK User’s Guide. SIAM, Philadelphia (1997)Google Scholar
  2. 2.
    Burer, S., Monteiro, R.D.C., Choi, C.: SDPLR version 1.01 user’s guide (short). Department of Management Sciences, University of Iowa, Iowa City, IA 52242-1000 (2004). http://dollar.biz.uiowa.edu/~burer/software/SDPLR/Google Scholar
  3. 3.
    Cioslowski J. (2000): Many-Electron Densities and Reduced Density Matrices. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  4. 4.
    Cohen L., Frishberg C. (1976): Hierarchy equations for reduced density matrices. Phys. Rev. A13, 927–930CrossRefGoogle Scholar
  5. 5.
    Coleman A.J. (1963): Structure of fermion density matrices. Rev. Mod. Phys. 35, 668–687CrossRefGoogle Scholar
  6. 6.
    Coleman, A.J.: RDMs: How did we get here? In: [3], pp. 1–17Google Scholar
  7. 7.
    Colmenero F., Valdemoro C. (1994): Self-consistent approximate solution of the 2nd-order contracted Schrödinger-equation. Int. J. Quantum Chem. 51, 369–388CrossRefGoogle Scholar
  8. 8.
    Davidson E.R. (1969): Linear inequalities for density matrices. J. Math. Phys. 10, 725–734CrossRefGoogle Scholar
  9. 9.
    Deza M.M., Laurent M. (1997): Geometry of Cuts and Metrics. Springer, Berlin Heidelberg New YorkMATHGoogle Scholar
  10. 10.
    Dunning Jr T.H. (1970): Gaussian basis functions for use in molecular calculations I Contraction of (9s5p) atomic basis sets for the first-row atoms. J. Chem. Phys. 53: 2823–2833CrossRefGoogle Scholar
  11. 11.
    Dunning, Jr., T.H., Hay, P.J.: Gaussian basis sets for molecular calculations. In: Schaefer III, H.F. (eds) Modern Theoretical Chemistry, vol. 3: Methods of Electronic Structure Theory. Plenum, New York, pp. 1–28 (1977)Google Scholar
  12. 12.
    Ehara M., Nakata M., Kou H., Yasuda K., Nakatsuji H. (1999): Direct determination of the density matrix using the density equation: Potential energy curves of HF, CH4, BH3, NH3, and H2O. Chem. Phys. Lett. 305, 483–488CrossRefGoogle Scholar
  13. 13.
    Erdahl R.M. (1978): Representability. Int. J. Quantum Chem. 13, 697–718CrossRefGoogle Scholar
  14. 14.
    Erdahl R.M., Jin B. (2000): The lower bound method for reduced density matrices. Journal of Molecular Structure: THEOCHEM 527, 207–220Google Scholar
  15. 15.
    Erdahl, R.M., Jin, B.: On calculating approximate and exact density matrices. In: [3], pp. 57–84Google Scholar
  16. 16.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al.: Gaussian 98, Revision A.11.3, Gaussian, Inc., Pittsburgh PA (2002)Google Scholar
  17. 17.
    Garrod C., Fusco M.A. (1976): A density matrix variational calculation for atomic Be. Int. J. Quantum Chem. 10, 495–510CrossRefGoogle Scholar
  18. 18.
    Garrod C., Percus J.K. (1964): Reduction of the N-particle variational problem. J. Math. Phys. 5, 1756–1776CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Garrod C., Mihailović M.V., Rosina M. (1975): The variational approach to the two-body density matrix. J. Math. Phys. 16, 868–874CrossRefGoogle Scholar
  20. 20.
    Graner G., Hirota E., Iijima T., Kuchitsu K., Ramsay D.A., Vogt J., Vogt N. (1998): Landolt-Börnstein – Group II Molecules and Radicals, vol. 25, subvolume A. Springer, Berlin Heidelberg New YorkGoogle Scholar
  21. 21.
    Graner G., Hirota E., Iijima T., Kuchitsu K., Ramsay D.A., Vogt J., Vogt N. (1999): Landolt-Börnstein – Group II Molecules and Radicals, vol. 25, subvolume B. Springer, Berlin Heidelberg New YorkGoogle Scholar
  22. 22.
    Hehre W.J., Stewart R.F., Pople J.A. (1969): Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of slater-type atomic orbitals. J. Chem. Phys. 51, 2657–2664CrossRefGoogle Scholar
  23. 23.
    Hehre W.J., Ditchfield R., Stewart R.F., Pople J.A. (1970): Self-consistent molecular orbital methods. IV. Use of Gaussian expansions of slater-type orbitals. Extension to second-row molecules. J. Chem. Phys. 52, 2769–2773CrossRefGoogle Scholar
  24. 24.
    Huber K.P., Herzberg G. (1979): Molecular Spectra and Molecular Structure IV, Electronic Constants of Diatomic Molecules. Van Nostrand Reinhold, New YorkGoogle Scholar
  25. 25.
    Husimi K. (1940): Some formal properties of the density matrix. Proc. Phys. Math. Soc. Jpn. 22, 264–314MATHGoogle Scholar
  26. 26.
    Karp R.M., Papadimitriou C.H. (1982): On linear characterization of combinatorial optimization problems. SIAM J. Comput. 11, 620–632CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    Kijewski L.J. (1972): Effectiveness of symmetry and the Pauli condition on the 1 matrix in the reduced-density-matrix variational principle. Phys. Rev. A6, 31–35CrossRefGoogle Scholar
  28. 28.
    Kijewski L.J. (1974): Strength of the G-matrix condition in the reduced-density-matrix variational principle. Phys. Rev. A9, 2263–2266CrossRefGoogle Scholar
  29. 29.
    Löwdin P.-O. (1955): Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational iteration. Phys. Rev. 97, 1474–1489CrossRefMathSciNetGoogle Scholar
  30. 30.
    Mayer J.E. (1955): Electron correlation. Phys. Rev. 100, 1579–1586CrossRefMATHGoogle Scholar
  31. 31.
    Mazziotti D.A. (1998): Contracted Schrödinger equation: Determining quantum energies and two-particle density matrices without wave functions. Phys. Rev. A57, 4219–4234CrossRefGoogle Scholar
  32. 32.
    Mazziotti, D.A.: Cumulants and the contracted Schrödinger equation. In: [3], pp. 139–163Google Scholar
  33. 33.
    Mazziotti D.A. (2002): Variational minimization of atomic and molecular ground-state energies via the two-particle reduced density matrix. Phys. Rev. A65: 062511CrossRefGoogle Scholar
  34. 34.
    Mazziotti D.A. (2002): Solution of the 1,3-contracted Schrödinger equation through positivity conditions on the two-particle reduced density matrix. Phys. Rev. A66, 062503CrossRefGoogle Scholar
  35. 35.
    Mazziotti D.A. (2004): Realization of quantum chemistry without wave functions through first-order semidefinite programming. Phys. Rev. Lett. 93, 213001CrossRefGoogle Scholar
  36. 36.
    Mazziotti D.A. (2004): First-order semidefinite programming for the direct determination of two-electron reduced density matrices with application to many-electron atoms and molecules. J. Chem. Phys. 121, 10957–10966CrossRefGoogle Scholar
  37. 37.
    Mazziotti D.A., Erdahl R.M. (2001): Uncertainty relations and reduced density matrices: Mapping many-body quantum mechanics onto four particles. Phys. Rev. A63, 042113CrossRefGoogle Scholar
  38. 38.
    McRae W.B., Davidson E.R. (1972): Linear inequalities for density matrices II. J. Math. Phys. 13, 1527–1538CrossRefGoogle Scholar
  39. 39.
    Mihailović M.V., Rosina M. (1975): The variational approach to the density matrix for light nuclei. Nucl. Phys. A237: 221–228CrossRefGoogle Scholar
  40. 40.
    Monteiro R.D.C. (2003): First- and second-order methods for semidefinite programming. Math. Prog. B97, 209–244MathSciNetMATHGoogle Scholar
  41. 41.
    Nakata M., Nakatsuji H., Ehara M., Fukuda M., Nakata K., Fujisawa K. (2001): Variational calculations of fermion second-order reduced density matrices by semidefinite programming algorithm. J. Chem. Phys. 114, 8282–8292CrossRefGoogle Scholar
  42. 42.
    Nakata M., Ehara M., Nakatsuji H. (2002): Density matrix variational theory: Application to the potential energy surfaces and strongly correlated systems. J. Chem. Phys. 116, 5432–5439CrossRefGoogle Scholar
  43. 43.
    Nakata M., Ehara M., Nakatsuji H. (2003): Density matrix variational theory: Strength of Weinhold–Wilson inequalities. In: Löwdin P.-O., Kryachko E.S (eds) Fundamental World of Quantum Chemistry. Kluwer Academic, Boston, pp. 543–557Google Scholar
  44. 44.
    Nakatsuji H. (1976): Equation for direct determination of density matrix. Phys. Rev. A14, 41–50CrossRefGoogle Scholar
  45. 45.
    Nakatsuji, H.: Density equation theory in chemical physics. In: [3], pp. 85–116Google Scholar
  46. 46.
    Nayakkankuppam, M.V.: Optimization over symmetric cones. Ph.D. Thesis, Department of Computer Science, New York University, New York (1999)Google Scholar
  47. 47.
    Rosina M., Garrod C. (1975): The variational calculation of reduced density matrices. J. Comput. Phys. 18, 300-310CrossRefMathSciNetGoogle Scholar
  48. 48.
    Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A. (1993): General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347-1363CrossRefGoogle Scholar
  49. 49.
    Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999). http://sedumi.mcmaster.ca/Google Scholar
  50. 50.
    Szabo A., Ostlund N.S. (1996): Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Publications Inc., Mineola, New YorkGoogle Scholar
  51. 51.
    Todd M.J. (2001): Semidefinite optimization. Acta Numer. 10, 515–560MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Toh K.-C. (2003): Solving large scale semidefinite programs via an iterative solver on the augmented systems. SIAM J. Optim. 14, 670–698CrossRefMathSciNetMATHGoogle Scholar
  53. 53.
    Toh, K.-C., Tütüncü, R.H., Todd, M.J.: On the implementation of SDPT3 (version 3.1) – a Matlab software package for semidefinite-quadratic-linear programming. In: IEEE Conference on Computer-Aided Control System Design (2004)Google Scholar
  54. 54.
    Valdemoro C. (1992): Approximating the 2nd-order reduced density-matrix in terms of the 1st-order one. Phys. Rev. A45, 4462–4467CrossRefGoogle Scholar
  55. 55.
    Valdemoro, C., Tel, L.M., Pérez-Romero, E.: Critical questions concerning iterative solution of the contracted Schrödinger equation. In: [3], pp. 117–138Google Scholar
  56. 56.
    Wolkowicz H., Saigal R., Vandenberghe L. (2000): Handbook of Semidefinite Programming: Theory, Algorithms, and Applications. Kluwer Academic, BostonGoogle Scholar
  57. 57.
    Yamashita, M., Fujisawa, K., Kojima, M.: SDPARA : SemiDefiniteProgramming Algorithm paRAllel version. Parallel Comput. 29, 1053–1067 (2003). http://grid.r.dendai.ac.jp/sdpa/Google Scholar
  58. 58.
    Yasuda K. (1999) Direct determination of the quantum-mechanical density matrix: Parquet theory. Phys. Rev. A59, 4133–4149CrossRefGoogle Scholar
  59. 59.
    Yasuda K., Nakatsuji H. (1997): Direct determination of the quantum-mechanical density matrix using the density equation II. Phys. Rev. A56, 2648–2657CrossRefGoogle Scholar
  60. 60.
    Zhao, Z.: The reduced density matrix method for electronic structure calculation – application of semidefinite programming to N-fermion systems. Ph.D. Thesis, Department of Physics, New York University, New York, (2004)Google Scholar
  61. 61.
    Zhao Z., Braams B.J., Fukuda M., Overton M.L., Percus J.K. (2004): The reduced density matrix method for electronic structure calculations and the role of three-index representability conditions. J. Chem. Phys. 120, 2095–2104CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Mituhiro Fukuda
    • 1
  • Bastiaan J. Braams
    • 2
  • Maho Nakata
    • 3
  • Michael L. Overton
    • 4
  • Jerome K. Percus
    • 5
  • Makoto Yamashita
    • 6
  • Zhengji Zhao
    • 7
  1. 1.Department of Mathematical and Computing SciencesTokyo Institute of TechnologyMeguro-kuJapan
  2. 2.Department of Mathematics and Computer ScienceEmory UniversityAtlantaUSA
  3. 3.Department of Applied ChemistryThe University of TokyoBunkyo-kuJapan
  4. 4.Department of Computer Science, Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  5. 5.Courant Institute of Mathematical Sciences and Department of PhysicsNew York UniversityNew YorkUSA
  6. 6.Department of Information Systems CreationKanagawa UniversityKanagawa-ku, Yokohama-shiJapan
  7. 7.High Performance Computing Research DepartmentLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations