Mathematical Programming

, Volume 107, Issue 1–2, pp 63–89

Extending Scope of Robust Optimization: Comprehensive Robust Counterparts of Uncertain Problems

  • Aharon Ben-Tal
  • Stephen Boyd
  • Arkadi Nemirovski


In this paper, we propose a new methodology for handling optimization problems with uncertain data. With the usual Robust Optimization paradigm, one looks for the decisions ensuring a required performance for all realizations of the data from a given bounded uncertainty set, whereas with the proposed approach, we require also a controlled deterioration in performance when the data is outside the uncertainty set.

The extension of Robust Optimization methodology developed in this paper opens up new possibilities to solve efficiently multi-stage finite-horizon uncertain optimization problems, in particular, to analyze and to synthesize linear controllers for discrete time dynamical systems.

Mathematics Subject Classification (2000)

90C05 90C25 90C34 93C05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-Tal, A., Nemirovski, A.: Stable Truss Topology Design via Semidefinite Programming. SIAM J. Optimization 7, 991–1016 (1997)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Ben-Tal, A., Nemirovski, A.: Robust Convex Optimization. Math. Oper. Res. 23, 769–805 (1998)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Ben-Tal, A., Nemirovski, A.: Robust solutions to uncertain linear programs. OR Letters 25, 1–13 (1999)MATHMathSciNetGoogle Scholar
  4. 4.
    Ben-Tal, A., El-Ghaoui, L., Nemirovski, A.: Robust semidefinite programming. In: Semidefinite Programming and Applications, R. Saigal, R., Vandenberghe, L., Wolkowicz, H. (eds), Kluwer Academic Publishers, 2000Google Scholar
  5. 5.
    Ben-Tal, A., Nemirovski, A.: Robust Optimization –- Methodology and Applications. Math. Program. Series B 92, 453–480 (2002)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable Robust Solutions of Uncertain Linear Programs: Math. Program. 99, 351–376 (2004)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Ben-Tal, A., Golany, B., Nemirovski, A., Vial, J.-Ph.: Supplier-Retailer Flexible Commitments Contracts: A Robust Optimization Approach. Accepted to Manufacturing & Service Operations ManagementGoogle Scholar
  8. 8.
    Bertsimas, D., Pachamanova, D., Sim, M.: Robust Linear Optimization under General Norms. Oper. Res. Lett. 32, 510–516 (2004)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Bertsimas, D., Sim, M.: The price of Robustness. Oper. Res. 52, 35–53 (2004)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Bertsimas, D., Sim, M.: Robust Discrete optimization and Network Flows. Math. Program. Series B 98, 49–71 (2003)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Bertsekas, D.P., Nedic, A., Ozdaglar, A.E.: Convex Analysis and Optimization, Athena Scientific, 2003Google Scholar
  12. 12.
    El-Ghaoui, L., Lebret, H.: Robust solutions to least-square problems with uncertain data matrices. SIAM J. Matrix Anal. Appl. 18, 1035–1064 (1997)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    El-Ghaoui, L., Oustry, F., Lebret, H.: Robust solutions to uncertain semidefinite programs. SIAM J. Optimization 9, 33–52 (1998)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Grötschel, M., Lovasz, L., Schrijver, A.: The Ellipsoid Method and Combinatorial Optimization, Springer, Heidelberg, 1988Google Scholar
  15. 15.
    Soyster, A.L.: Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming. Oper. Res., 1973, pp. 1154–1157Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Aharon Ben-Tal
    • 1
  • Stephen Boyd
    • 2
  • Arkadi Nemirovski
    • 1
  1. 1.Faculty of Industrial Engineering and ManagementTechnion – Israel Institute of TechnologyTechnion cityIsrael
  2. 2.Department of Electrical EngineeringStanford UniversityStanfordUSA

Personalised recommendations