Mathematical Programming

, Volume 105, Issue 1, pp 1–8 | Cite as

George B. Dantzig: a legendary life in mathematical programming

  • Richard W. Cottle


Mathematical programming owes much to George B. Dantzig who passed away on May 13, 2005 at the age of 90. This article is a tribute to this legendary pioneer and a very brief review of his extensive and enduring contributions to our field.


Mathematical Method Mathematical Programming Enduring Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albers, D.J., Reid, C.: An interview with George B. Dantzig: The father of linear programming. College Mathematics Journal 17, 292–314 (1986). [The same interview appears in D.J. Albers, G.J. Alexanderson, C. Reid (eds.), More Mathematical People: Contemporary Conversations. Boston: Harcourt Brace Jovanovich, 1990.]MathSciNetGoogle Scholar
  2. 2.
    Dantzig, G.B. et al.: On the need for a system (sic) optimization laboratory. In: T.C. Hu, S.M. Robinson (eds.), Mathematical Programming New York: Academic Press, 1973. [See also, G.B. Dantzig, On the need for a systems optimization laboratory. In R.W. Cottle, J. Krarup (eds.), Optimisation Methods, London: The English Universities Press, 1974.]Google Scholar
  3. 3.
    Cottle, R.W.: The Basic George B. Dantzig. Stanford, California: Stanford University Press, 2003. 1970, pp. 79–90Google Scholar
  4. 4.
    Dantzig, G.B.: On the non-existence of tests of ``Student's'' hypothesis having power functions independent of sigma. Ann. Math. Stat. 11, 186–192 (1940)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Dantzig, G.B.: I Complete Form of the Neyman-Pearson Lemma; II On the Non-Existence of Tests of ``Student's'' Hypothesis having Power Functions Independent of Sigma. Doctoral dissertation, Department of Mathematics, University of California at Berkeley, 1946Google Scholar
  6. 6.
    Dantzig, G.B.: Programming in a linear structure. Econometrica 17, 73–74 (1949)Google Scholar
  7. 7.
    Dantzig, G.B.: Upper bounds, secondary constraints, and block triangularity in linear programming. Econometrica 23, 174–183 (1955)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Dantzig, G.B.: Linear programming under uncertainty. Management Science 1, 197–206 (1955)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Dantzig, G.B.: On the shortest route through a network. Management Science 6, 187–190 (1960)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Dantzig, G.B.: On the significance of solving linear programs with some integer variables. Econometrica 28, 30–44 (1960)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Dantzig, G.B.: Linear Programming and Extensions. Princeton, N.J.: Princeton University Press, 1963Google Scholar
  12. 12.
    Dantzig, G.B.: Reminiscences about the origins of linear programming. Oper. Res. Lett. 1, 43–48 (1982)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Dantzig, G.B.: Reminiscences about the origins of linear programming. In: A. Bachem, M. Grötschel, B. Korte (eds.), Mathematical Programming: The State of the Art, Berlin: Springer-Verlag, 1983Google Scholar
  14. 14.
    Dantzig, G.B.: Reminiscences about the origins of linear programming. In: R.W. Cottle, M.L. Kelmanson, B. Korte (eds.), Mathematical Programming. [Proceedings of the International Congress on Mathematical Programming, Rio de Janeiro, Brazil, 6–8 April, 1981]. Amsterdam: North-Holland, 1984Google Scholar
  15. 15.
    Dantzig, G.B.: Linear programming. In: J.K. Lenstra et al. (eds.), History of Mathematics, Amsterdam: CWI and North-Holland, 1991Google Scholar
  16. 16.
    Dantzig, G.B., Fulkerson, D.R.: Minimizing the number of tankers to meet a fixed schedule. Naval Research Logistics Quarterly 1, 217–222 (1954)Google Scholar
  17. 17.
    Dantzig, G.B., Fulkerson, D.R.: On the max-flow min-cut theorem of networks. In: H.W. Kuhn, A.W. Tucker (eds.), Linear Inequalities and Related Systems. Princeton: Princeton University Press, 1956Google Scholar
  18. 18.
    Dantzig, G.B., Fulkerson, D.R., Johnson, S.: Solution of a large-scale traveling-salesman problem. J. Oper. Res. Soc. America 2, 393–410 (1954)MathSciNetGoogle Scholar
  19. 19.
    Dantzig, G.B., Madansky, A.: On the solution of two-staged linear programs under uncertainty. In: J. Neyman (ed.), Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume I, Theory of Statistics, Berkeley: University of California Press, 1961Google Scholar
  20. 20.
    Dantzig, G.B., McAllister, P.H., Stone, J.C.: Formulating an objective for an economy. Math. Program. Series B 42, 11–32 (1988)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Dantzig, G.B., Orden, A., Wolfe, P.: The generalized simplex method for minimizing a linear form under linear inequality constraints. Pacific J. Math. 5, 183–195 (1955)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Dantzig, G.B., Saaty, T.L.: Compact City. San Francisco: Freeman, 1973Google Scholar
  23. 23.
    Dantzig, G.B., Thapa, M.N.: Linear Programming 1: Introduction. New York: Springer, 1997Google Scholar
  24. 24.
    Dantzig, G.B., Thapa, M.N.: Linear Programming 2: Theory and Extensions. New York: Springer, 2003Google Scholar
  25. 25.
    Dantzig, G.B., Wald, A.: On the fundamental lemma of Neyman and Pearson. Ann. Math. Stat. 22, 87–93 (1951)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Oper. Res. 8, 101–111 (1960)zbMATHCrossRefGoogle Scholar
  27. 27.
    Dantzig, G.B., Wolfe, P.: The decomposition algorithm for linear programming. Econometrica 29, 767–778 (1961)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Dantzig, T.: Number, The Language of Science, New York: Macmillan, 1930Google Scholar
  29. 29.
    Hitchcock, F.L.: The distribution of a product from several sources to numerous localities. J. Math. Phys. 20, 224–230 (1941)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Koopmans, T.C. ed.: Activity Analysis of Production and Allocation. New York: John Wiley & Sons, 1951Google Scholar
  31. 31.
    Leontief, W.: The Structure of the American Economy. New York: Oxford University Press, 1951Google Scholar
  32. 32.
    Tucker, A.W.: Dual systems of homogeneous linear relations. In: H.W. Kuhn, A.W. Tucker (eds.), Linear Inequalities and Related Systems. [Annals of Mathematics Study 38.] Princeton, N.J.: Princeton University Press, 1956Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Richard W. Cottle
    • 1
  1. 1.Dept. of Management Sciences and Engineering, Terman Engineering CenterStanford UniversityStanfordUSA

Personalised recommendations