Mathematical Programming

, Volume 105, Issue 2–3, pp 563–582 | Cite as

Mixed Integer Models for the Stationary Case of Gas Network Optimization

Article

Abstract

A gas network basically consists of a set of compressors and valves that are connected by pipes. The problem of gas network optimization deals with the question of how to optimize the flow of the gas and to use the compressors cost-efficiently such that all demands of the gas network are satisfied. This problem leads to a complex mixed integer nonlinear optimization problem. We describe techniques for a piece-wise linear approximation of the nonlinearities in this model resulting in a large mixed integer linear program. We study sub-polyhedra linking these piece-wise linear approximations and show that the number of vertices is computationally tractable yielding exact separation algorithms. Suitable branching strategies complementing the separation algorithms are also presented. Our computational results demonstrate the success of this approach.

Keywords

Mixed integer programming Cutting planes Gas optimization Piece-wise linear functions Branch-and-Bound SOS constraints 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0-1 programs. Mathematical Programming 58, 295–324 (1993)MATHMathSciNetGoogle Scholar
  2. 2.
    Beale, E.M.L.: Branch and bound methods for mathematical programming systems. Annals of Discrete Mathematics 5, 201–219 (1979)MATHMathSciNetGoogle Scholar
  3. 3.
    Beale, E.M.L., Forrest, J.J.H.: Global optimization using special ordered sets. Mathematical Programming 10, 52–69 (1976)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Beale, E.L.M., Tomlin, J.A.: Special facilities in a general mathematical programming system for nonconvex problems using ordered sets of variables. In: Lawrence J. (ed) Proceedings of the fifth international conference on operations research. Tavistock Publications, London, 1970, pp 447–454Google Scholar
  5. 5.
    Christof, T., Löbel, A.: PORTA: POlyhedron Representation Transformation Algorithm, Version 1.3. Konrad-Zuse-Zentrum für Informationstechnik Berlin, 2000Google Scholar
  6. 6.
    Dantzig, G.B.: Linear programming and extensions. Princeton University Press, 1963Google Scholar
  7. 7.
    de Farias, Jr., I.R., Johnson, E.L., Nemhauser, G.L.: A generalized assignment problem woth special ordered sets; a polyhedral approach. Mathematical Programming 89, 187–203 (2000)MATHMathSciNetGoogle Scholar
  8. 8.
    de Farias, Jr., I.R., Johnson, E.L., Nemhauser, G.L.: Branch-and-Cut for combinatorial optimization problems without auxiliary binary variables. The Knowledge Engineering Review 16, 25–39 (2001)MATHGoogle Scholar
  9. 9.
    Ehrhardt, K., Steinbach, M.: Nonlinear optimization in gas networks. In: Bock, H.G., Kostina, E., Phu, H.X., Ranacher, R. (eds) Modeling simulation and optimization of complex processes. Berlin - Heidelberg - New York, Springer, pp 139-148, 2005Google Scholar
  10. 10.
    Erdmann, B., Lang, J., Roitzsch, R.: KARDOS User's Guide. Technical Report ZR 02-42, Konrad-Zuse-Zentrum Berlin, 2002Google Scholar
  11. 11.
    Gopal, V.N.: Techniques to optimize fuel and compressor combination selection. In: American Gas Association Transmission Conference, 1979Google Scholar
  12. 12.
    ILOG CPLEX Division, 889 Alder Avenue, Suite 200, Incline Village, NV 89451, USA. Using the CPLEX Callable Library, 2002. Information available at http://www.cplex.com
  13. 13.
    Jenicek, T.: Steady-state optimization of gas transport. In: Proceedings of the 2nd international workshop SIMONE on innovative approaches to modelling and optimal control of large scale pipeline networks, September 1993Google Scholar
  14. 14.
    Hall, Jr. M.: Combinatorial theory. Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1967Google Scholar
  15. 15.
    Keha, A.B., de Farias Jr. I.R., Nemhauser, G.L.: Models for representing piecewise linear cost functions. Operations Research Letters 32, 44–48 (2004)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Králik, J.: Compressor stations in SIMONE. In: Proceedings of the 2nd International Workshop SIMONE on Innovative Approaches to Modelling and Optimal Control of Large Scale Pipeline Networks, 1993Google Scholar
  17. 17.
    Lee, J., Wilson, D.: Polyhedral methods for piecewise-linear functions I: the lambda method. Discrete Applied Mathematics 108, 269–285 (2001)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Markowitz, H.M., Manne, A.S.: On the solution of discrete programming problems. Econometrica 25, 84–110 (1957)MATHMathSciNetGoogle Scholar
  19. 19.
    Möller, M.: Mixed integer models for the optimisation of gas networks in the stationary case. PhD thesis, Darmstadt University of Technology, 2004Google Scholar
  20. 20.
    Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley, 1988Google Scholar
  21. 21.
    Padberg, M.: Approximating separable nonlinear functions via mixed zero-one programs. Operations Research Letters 27, 1–5 (2000)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Pratt, K.F., Wilson, J.G.: Optimization of operation of gas transmission systems. Transactions of the Institute of Measurement and Control 6(4), 261–269 (1984)Google Scholar
  23. 23.
    Carter, R.: Pipeline optimization: Dynamic programming after 30 years. In: Pipeline simulation interest group,URL:// www.psig.com, 1998Google Scholar
  24. 24.
    Ruhrgas, A.G.: http://www.ruhrgas.com, 2003
  25. 25.
    Schrijver, A.: Combinatorial optimization. polyhedra and efficiency (3 volumes). Springer, 2003Google Scholar
  26. 26.
    Sekirnjak, E.: Mixed integer optimization for gas transmission and distribution systems. INFORMS Meeting, Seattle, October 1998, Lecture notesGoogle Scholar
  27. 27.
    Sekirnjak, E.: Transiente technische optimierung (TTO-Prototyp). PSI Berlin, 1999. Technical ReportGoogle Scholar
  28. 28.
    Smeers, Y., De Wolf, D.: The gas transmission problem solved by an extension of the simplex algorithm. Management Science 46, 1454–1465 (2000)Google Scholar
  29. 29.
    Tomlin, J.A.: A suggested extension of special ordered sets to non-separable non-convex programming problems. Annals of Discrete Mathematics 11, 359–370 (1981)MATHMathSciNetGoogle Scholar
  30. 30.
    van Oostvoorn, F.: European gas market developments - oportunities and threats-. In: Supplement to the IAEE/GEE Conference ``Energy Markets What's New?'' pp 29–44, Berlin, 9-10 September 1998Google Scholar
  31. 31.
    Vostrý, Z.: Transient optimization of gas transport and distribution. In: Proceedings of the 2nd International Workshop SIMONE on Innovative Approaches to Modelling and Optimal Control of Large Scale Pipeline Networks, 1993Google Scholar
  32. 32.
    Williams, H.P.: Model building in mathematical programming. Wiley, 1990Google Scholar
  33. 33.
    Wilson, D.: Polyhedral methods for piecewise-linear functions. PhD thesis, University of Kentucky 1998. Thesis only availabe via www.umi.comGoogle Scholar
  34. 34.
    Wright, S., Somani, M., Ditzel, C.: Compressor station optimization. In: Pipeline Simulation Interest Group, Denver, Colorado, October 1998Google Scholar
  35. 35.
    Jiří Záworka.: Project SIMONE - Achievements and running development. Institute of Information Theory and Automation, Czech RepublikGoogle Scholar
  36. 36.
    Zimmer, H.I.: Calculating optimum pipeline operations. American Gas Association Transmission Conference, 1975Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Alexander Martin
    • 1
  • Markus Möller
    • 1
  • Susanne Moritz
    • 1
  1. 1.Darmstadt University of TechnologyGermany

Personalised recommendations