Mathematical Programming

, Volume 104, Issue 2–3, pp 263–292 | Cite as

Variational analysis of functions of the roots of polynomials

  • James V. Burke
  • Adrian S. Lewis
  • Michael L. Overton
Article

Abstract

The Gauss-Lucas Theorem on the roots of polynomials nicely simplifies the computation of the subderivative and regular subdifferential of the abscissa mapping on polynomials (the maximum of the real parts of the roots). This paper extends this approach to more general functions of the roots. By combining the Gauss-Lucas methodology with an analysis of the splitting behavior of the roots, we obtain characterizations of the subderivative and regular subdifferential for these functions as well. In particular, we completely characterize the subderivative and regular subdifferential of the radius mapping (the maximum of the moduli of the roots). The abscissa and radius mappings are important for the study of continuous and discrete time linear dynamical systems.

Mathematics Subject Classification (1991)

90C46 49K40 65K05 15A42 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burke, J.V., Lewis, A.S., Overton, M.L.: Optimizing matrix stability. Proc. of the American Math. Soc. 129, 1635–1642 (2000)CrossRefGoogle Scholar
  2. 2.
    Burke, J.V., Lewis, A.S., Overton, M.L.: Optimal stability and eigenvalue multiplicity. Foundations of Computational Mathematics 1, 205–225 (2001)CrossRefGoogle Scholar
  3. 3.
    Burke, J.V., Lewis, A.S., Overton, M.L.: Variational analysis of the abscissa mapping for polynomials via the Gauss-Lucas theorem. Journal of Global Optimization 28, 259–268 (2004)CrossRefGoogle Scholar
  4. 4.
    Burke, J.V., Overton, M.L.: Variational analysis of the abscissa mapping for polynomials. SIAM Journal on Control and Optimization 39, 1651–1676 (2000)CrossRefGoogle Scholar
  5. 5.
    Burke, J.V., Overton, M.L.: Variational analysis of non–Lipschitz spectral functions. Math. Programming 90, 317–351 (2001)Google Scholar
  6. 6.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York 1983. Republished by SIAM, 1990Google Scholar
  7. 7.
    Clarke, F.H., Ledyaev, Yu.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, 1998Google Scholar
  8. 8.
    Levantovskii, L.V.: On singularities of the boundary of a stability region. Moscow Univ. Math. Bull. 35, 19–22 (1980)Google Scholar
  9. 9.
    Lucas, F.: Sur une application de la méchanique rationnelle á la théorie des équations. C.R. Acad. Sci. Paris 89, 224–226 (1879)Google Scholar
  10. 10.
    Lucas, F.: Géométrie des Polynômes. J. École Polytech 46, 1–33 (1879)Google Scholar
  11. 11.
    Marden, M.: Geometry of Polynomials. American Mathematical Society, 1966Google Scholar
  12. 12.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, Vol. 1: Basic Theory, Vol. 2: Applications. Springer, 2005Google Scholar
  13. 13.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, 1970Google Scholar
  14. 14.
    Rockafellar, R.T., Wets, R.J-B.: Variational Analysis. Springer, 1998Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • James V. Burke
    • 1
  • Adrian S. Lewis
    • 2
  • Michael L. Overton
    • 3
  1. 1.Department of MathematicsUniversity of WashingtonSeattleUSA
  2. 2.School of Operations Research and Industrial EngineeringCornell UniversityIthacaUSA
  3. 3.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations