Mathematical Programming

, Volume 103, Issue 2, pp 335–356 | Cite as

A comparison of complete global optimization solvers

  • Arnold Neumaier
  • Oleg Shcherbina
  • Waltraud Huyer
  • Tamás Vinkó


Results are reported of testing a number of existing state of the art solvers for global constrained optimization and constraint satisfaction on a set of over 1000 test problems in up to 1000 variables, collected from the literature.

The test problems are available online in AMPL and were translated into the input formats of the various solvers using routines from the COCONUT environment. These translators are available online, too.


Global Optimization Mathematical Method Test Problem Constraint Satisfaction Optimization Solver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barr, R.S., Golden, B.L., Kelly, J.P., Resende, M.G.C., Stewart, W.R.: Designing and reporting on computational experiments with heuristic methods. J. Heuristics 1, 9–32 (1995) Scholar
  2. 2.
    Benhamou, F., Goualard, F.: Universally Quantified Interval Constraints. In: Proceedings of the 6th International Conference on Principles and Practice of Constraint Programming (CP’2000), 2000, pp. 67–82Google Scholar
  3. 3.
    COCONUT test results, WWW-directory, 2004,
  4. 4.
    Crowder, H.P., Dembo, R.S., Mulvey, J.M.: On reporting Computational Experiments with Mathematical Software. ACM Transactions on Mathematical Software 5, 193–203 (1979)CrossRefGoogle Scholar
  5. 5.
    Gould, N.I.M., Orban, D., Toint, Ph.L.: CUTEr, a constrained and unconstrained testing environment, revisited. WWW-document, 2001.
  6. 6.
    Dixon, L.C.W., Szegö, G.P.: The Global Optimization Problem: An Introduction. In: Towards Global Optimization 2, North-Holland, Amsterdam 1978, pp. 1–15Google Scholar
  7. 7.
    Dolan, E.D., Moré, J.J.: Benchmarking Optimization Software with COPS. Tech. Report ANL/MCS-246, Argonne Nat. Lab., November 2000.
  8. 8.
    Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Programming 91, 201–213 (2002), Scholar
  9. 9.
    Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming. Duxbury Press, Brooks/Cole Publishing Company, 1993,
  10. 10.
    Frontline Systems, Inc., Solver Technology - Global Optimization, WWW-document (2003),
  11. 11.
    GAMS Solver descriptions, GAMS/OQNLP, WWW-document, 2003,
  12. 12.
    GAMS World, WWW-document, 2002,
  13. 13.
    GLOBAL Library, WWW-document, 2002,
  14. 14.
    Greenberg, H.J.: Computational testing: Why, how, and how much. ORSA J. Comput. 2, 94–97 (1990)Google Scholar
  15. 15.
    Huyer, W.: A comparison of some algorithms for bound constrained global optimization. WWW-document, 2004,
  16. 16.
    ILOG: ILOG Solver. Reference Manual, 2002Google Scholar
  17. 17.
    Jackson, R.H.F., Boggs, P.T., Nash, S.G., Powell, S.: Guidelines for reporting results of computational experiments. Report of the ad hoc committee. Math. Program. 49, 413–426 (1990/91)Google Scholar
  18. 18.
    Janka, E.: Vergleich stochastischer Verfahren zur globalen Optimierung. Diplomarbeit, Mathematisches Inst., Universität Wien, 1999 A shorter online version in English language is at
  19. 19.
    Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht 1996,
  20. 20.
    Lebbah, Y.: ICOS (Interval COnstraints Solver), WWW-document (2003),
  21. 21.
    Lindo Systems, Inc., New LINGO 8.0, WWW-document, 2003,
  22. 22.
    Mittelmann, H.: Benchmarks. WWW-document, 2002,
  23. 23.
    Mongeau, M., Karsenty, H., Rouzé, V., Hiriart-Urruty,J.-B.: Comparison of public-domain software for black box global optimization. Optimization Methods and Software 13, 203–226 (2000) Scholar
  24. 24.
    Murtagh, B.A., Saunders, M.A.: MINOS 5.4 User’s Guide, Report SOL 83-20R, Systems Optimization Laboratory. Stanford University, December 1983 (revised February 1995),
  25. 25.
    Neumaier, A.: Complete Search in Continuous Global Optimization and Constraint Satisfaction. In: Acta Numerica 2004, A. Iserles (ed.), Cambridge University Press 2004, pp. 271–369Google Scholar
  26. 26.
    Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer programming. Math. Programming A 99, 283–296 (2004),∼neum/papers.html#mipCrossRefGoogle Scholar
  27. 27.
    Pinter, J.D.: Global Optimization in Action. Kluwer, Dordrecht 1996,
  28. 28.
    Ratliff, H.D., Pierskalla, W.: Reporting Computational Experience in Operations Research. Operations Research 29 (2), xi–xiv (1981)Google Scholar
  29. 29.
    Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Global Optim. 8, 107–139 (1996), Scholar
  30. 30.
    Schichl, H.: Global optimization in the COCONUT project. In: Proceedings of the Dagstuhl Seminar “Numerical Software with Result Verification”. Springer Lecture Notes in Computer Science 2991, Springer, Berlin, 2004Google Scholar
  31. 31.
    Schichl, H.: Mathematical Modeling and Global Optimization, Habilitation Thesis, 2003, Cambridge Univ. Press, to appear.
  32. 32.
    Schichl, H.: The COCONUT Environment. Web site, 2004, environment/
  33. 33.
    Shcherbina, O., Neumaier, A.: Djamila Sam-Haroud, Xuan-Ha Vu and Tuan-Viet Nguyen, Benchmarking global optimization and constraint satisfaction codes. In: Ch. Bliek, Ch. Jermann, A. Neumaier (eds.), Global Optimization and Constraint Satisfaction, Springer, Berlin 2003Google Scholar
  34. 34.
    Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, Dordrecht 2002Google Scholar
  35. 35.
    Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: A theoretical and computational study, Math. Programming 99, 563–591 (2004)CrossRefGoogle Scholar
  36. 36.
    Vanderbei, B.: Nonlinear Optimization Models. WWW-document,

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Arnold Neumaier
    • 1
  • Oleg Shcherbina
    • 1
  • Waltraud Huyer
    • 1
  • Tamás Vinkó
    • 2
  1. 1.Fakultät für MathematikUniversität WienWienAustria
  2. 2.Research Group on Artificial Intelligence of the Hungarian Academy of SciencesUniversity of SzegedSzegedHungary

Personalised recommendations