Mathematical Programming

, Volume 104, Issue 1, pp 179–202 | Cite as

Cuts for mixed 0-1 conic programming

Article

Abstract

In this we paper we study techniques for generating valid convex constraints for mixed 0-1 conic programs. We show that many of the techniques developed for generating linear cuts for mixed 0-1 linear programs, such as the Gomory cuts, the lift-and-project cuts, and cuts from other hierarchies of tighter relaxations, extend in a straightforward manner to mixed 0-1 conic programs. We also show that simple extensions of these techniques lead to methods for generating convex quadratic cuts. Gomory cuts for mixed 0-1 conic programs have interesting implications for comparing the semidefinite programming and the linear programming relaxations of combinatorial optimization problems, e.g. we show that all the subtour elimination inequalities for the traveling salesman problem are rank-1 Gomory cuts with respect to a single semidefinite constraint. We also include results from our preliminary computational experiments with these cuts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alizadeh, F.: Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim. 5 (1), 13–51, (1995)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Prog. 95 (1, Ser. B), 3–51 2003Google Scholar
  3. 3.
    Anjos, M.F., Wolkowicz, H.: Strengthened semidefinite relaxations via a second lifting for the max-cut problem. Disc. Appl. Math. 119 (1-2), 79–106 (2002)Google Scholar
  4. 4.
    Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of traveling salesman problems. Documenta Mathematica Journal der Deutschen Mathematiker-Vereinigung, ICM III:645–656, 1998Google Scholar
  5. 5.
    Balas, E.: Disjunctive programming. Annals of Discrete Mathematics 5, 3–51 (1979)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Balas, E., Ceria, S., Cornuéjols., G.: A lift-and-project cutting plane algorithm for mixed 0-1 programs. Mathematical Programming 58, 295–324 (1993)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Barahona, F., Mahjoub., A.R.: On the cut polytope. Math. Prog. 36, 157–173 (1986)MATHMathSciNetGoogle Scholar
  8. 8.
    Ben-Tal, A., Margalit, T., Nemirovski, A.: Robust modeling of multi-stage portfolio problems. In: High performance optimization, pp 303–328. Kluwer Acad. Publ., Dordrecht, 2000Google Scholar
  9. 9.
    Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23 (4), 769–805 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Benson, H.Y., Vanderbei., R.J.: Solving problems with semidefinite and related constraints using interior-point methods for nonlinear programming. Math. Prog. 95 (2 ser. B), 279–302 (2003)Google Scholar
  11. 11.
    Bixby, R.E., Ceria, S., McZeal, C.M., Savelsberg, M.W.P.: A mixed integer programming library: MIPLIB3.0. Available at http://www.caam.rice.edu/~bixby/miplib/miplib.html.
  12. 12.
    Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory. SIAM, Philadelphia, PA, 1994Google Scholar
  13. 13.
    Çezik, M.T.: Semidefinite methods for the traveling salesman and other combinatorial problems. PhD thesis, IEOR Dept., Columbia University, 2000Google Scholar
  14. 14.
    Çezik, M.T., Iyengar, G.: Quadratic cuts for mixed 0-1 quadratic programs. Technical Report TR-2001-02, CORC, IEOR Dept., Columbia University, 2001. Available at http://www.corc.ieor.columbia.edu/reports/techreports/tr-2001- 02.ps.gz
  15. 15.
    Cvetković, D., Čangalović, M., Kovačević-Vujčić, V.: Semidefinite programming methods for the symmetric traveling salesman problem. In: IPCO VII (Graz, 1999), pp 126–136. Springer, Berlin, 1999Google Scholar
  16. 16.
    El Ghaoui, L., Oustry, F., Lebret., H.: Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9 (1), 33–52 (1998)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Goemans., M.: Semidefinite programming in combinatorial optimization. Math. Prog. 79, 143–161 (1997)CrossRefGoogle Scholar
  18. 18.
    Goemans, M., Rendl, F.: Combinatorial optimization. In: Handbook of Semidefinite Programming. Kluwer, 2000Google Scholar
  19. 19.
    Goemans, M., Williamson., D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Goldfarb, D.: The simplex method for conic programming. Technical Report TR-2002-05, CORC, IEOR Dept., Columbia University, 2002. Available at http://www.corc.ieor.columbia.edu/reports/techreports/tr-2002-05.ps
  21. 21.
    Goldfarb, D., Iyengar., G.: Robust portfolio selection problems. Math. Oper. Res. 28 (1), 1–38 (2003)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Helmberg, C.: A cutting plane algorithm for large scale semidefinite relaxations. In: The sharpest cut, MPS/SIAM Ser. Optim., pages 233–256. SIAM, Philadelphia, PA, 2004Google Scholar
  23. 23.
    Helmberg, C., Rendl., F.: Solving quadratic (0,1)-problems by semidefinite programs and cutting planes. Math. Prog. 82 (3), 291–315 (1998)MathSciNetGoogle Scholar
  24. 24.
    Karloff., H.: How good is the Goemans-Williamson maxcut algorithm. SIAM J. Comp. 29 (1), 336–350 (1999)Google Scholar
  25. 25.
    Lasserre., J.B.: Global optimization with polynomials and the methods of moments. SIAM J. Optim. 1, 796–817 (2001)Google Scholar
  26. 26.
    Laurent., M.: A comparison of Sherali-Adams, Lovász-Schrijver and lasserre relaxations for 0-1 programming. Math. Oper. Res. 28 (3), 470–496 (2003)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds).: The traveling salesman problem. John Wiley & Sons Ltd., Chichester, 1990Google Scholar
  28. 28.
    Lemke, C., Spielberg., K.: A capital budgeting heuristic algorithm using exchange operations. AIEE Transactions 6, 264–280 (1974)Google Scholar
  29. 29.
    Lobo, M.S., Fazel, M., Boyd, S.: Portfolio optimization with linear and fixed transaction costs and bounds on risk. Under review in Ann. Oper. Res. Available at http://www.stanford.edu/~boyd/reports/portfolio.pdf.
  30. 30.
    Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret., H.: Applications of second-order cone programming. Linear Algebra Appl., 284 (1 (3), 193–228 (1998)MathSciNetGoogle Scholar
  31. 31.
    Lovász, L., Schrijver., A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1 (2), 166–190 (1991)CrossRefGoogle Scholar
  32. 32.
    Mitchell., J.B.: Fixing variables and generating classical cutting planes when using an interior point branch-and-cut method to solve integer programming problems. Eur. J. Oper. Res. 97, 139–148 (1997)CrossRefGoogle Scholar
  33. 33.
    Mitchell., J.B.: Computational experience with an interior point cutting plane algorithm. SIAM J. Optim. 10 (4), 1212–1227 (2000)Google Scholar
  34. 34.
    Mitchell, J.B., Borchers, B.: Solving linear ordering problems with a combined interior point/simplex cutting plane algorithm. In: High performance optimization, pp 349–366. Kluwer Acad. Publ., Dordrecht, 2000Google Scholar
  35. 35.
    Mitchell., J.E.: Restarting after branching in the SDP approach to MAX-CUT and similar combinatorial optimization problems. J. Comb. Opt. 5 (2), 151–166 (2001)Google Scholar
  36. 36.
    Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley-Interscience series in Discrete Mathematics. John Wiley & Sons, Inc., 1999Google Scholar
  37. 37.
    Nesterov, Y., Nemirovskii, A.: Interior-point polynomial algorithms in convex programming. SIAM, Philadelphia, 1993Google Scholar
  38. 38.
    Petersen., C.: Computational experience with variants of the Balas algorithm applied to the selection of R&D projects. Mgmt. Sc. 13, 736–750 (1967)CrossRefGoogle Scholar
  39. 39.
    Reinelt., G.: TSPLIB— A traveling salesman problem library. ORSA J. Comp. 3 (4), 376–384 (1991)Google Scholar
  40. 40.
    Sherali, H.D., Adams., W.P.: A hierarchy of relaxations between the continuous and convex hull representations of zero-one programming problems. SIAM J. Disc. Math. 3, 411–430 (1990)CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Sherali, H.D., Adams., W.P.: A hierarchy of relaxations for mixed-integer zero-one programming problems. Discrete Appl. Math. 52, 83–106 (1994)CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Stubbs, R.A., Mehrotra., S.: A branch-and-cut method for 0-1 mixed convex programming. Math. Prog. 86, 515–532 (1999)CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Stubbs, R.A., Mehrotra., S.: Generating convex polynomial inequalities for mixed 0-1 programs. J. Global Optim. 24 (3), 311–332 (2002)CrossRefMathSciNetGoogle Scholar
  44. 44.
    Stürm., J.: Using SeDuMi 1. 02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 625 (653), 11–12 (1999)Google Scholar
  45. 45.
    Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Review, 1996Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.GERAD and Départment d’Informatique et de Recherche OpérationnelleUniversité de MontréalMontréalCanada
  2. 2.IEOR DepartmentColumbia University New YorkNew YorkUSA

Personalised recommendations