Mathematical Programming

, Volume 104, Issue 1, pp 39–68 | Cite as

Interior projection-like methods for monotone variational inequalities

  • Alfred Auslender
  • Marc Teboulle


We propose new interior projection type methods for solving monotone variational inequalities. The methods can be viewed as a natural extension of the extragradient and hyperplane projection algorithms, and are based on using non Euclidean projection-like maps. We prove global convergence results and establish rate of convergence estimates. The projection-like maps are given by analytical formulas for standard constraints such as box, simplex, and conic type constraints, and generate interior trajectories. We then demonstrate that within an appropriate primal-dual variational inequality framework, the proposed algorithms can be applied to general convex constraints resulting in methods which at each iteration entail only explicit formulas and do not require the solution of any convex optimization problem. As a consequence, the algorithms are easy to implement, with low computational cost, and naturally lead to decomposition schemes for problems with a separable structure. This is illustrated through examples for convex programming, convex-concave saddle point problems and semidefinite programming.


Variational inequalities Convergence analysis Extragradient method Hyperplane projection algorithms Interior projection-like maps Convex-concave saddle point problems Duality and decomposition schemes Conic and semidefinite programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auslender, A.: Optimisation: Méthodes Numériques. Masson, Paris, 1976Google Scholar
  2. 2.
    Auslender, A., Teboulle, M., Ben Tiba, S.: Interior Proximal and Multiplier Methods based on Second Order Homogeneous Kernels. Mathematics of Operations Research 24, 645–668 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer Monographs in Mathematics, Springer-Verlag New-York, 2002Google Scholar
  4. 4.
    Auslender, A., Teboulle, M.: The Log-Quadratic proximal methodology in convex optimization algorithms and variational inequalities. In: P. Daniel, F. Gianessi, A. Maugeri (eds.), Equilibrium problems and variational models, Vol. 68, Nonconvex optimization and its applications, Kluwer Academic Press, 2003Google Scholar
  5. 5.
    Auslender, A., Teboulle, M.: A unified framewok for interior gradient/subgradient and proximal methods in convex optimization. Preprint, February 2003. Submitted for publicationGoogle Scholar
  6. 6.
    Beck, A., Teboulle, M.: Mirror descent and nonlinear projected subgradient methods for convex optimization. Oper. Res. Lett. 31, 167–175 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bruck, R.D.: An iterative solution of a variational inequality for certain monotone operators in Hilbert space. Bulletin of The American Math. Soc. 81, 890–892 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chen, G., Teboulle, M.: Convergence analysis of a proximal-like minimization algorithm using Bregman functions. SIAM J. Optim. 3, 538–543 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Doljanski, M., Teboulle, M.: An interior proximal algorithm and the exponential multiplier method for semidefinite programming. SIAM J. Optim. 9, 1–13 (1998)CrossRefGoogle Scholar
  10. 10.
    Facchinei, F., Pang, J.S.: Finite-dimensional variational inequalities and complementarity problems. Vol. I and II. Springer Series in Operations Research. Springer-Verlag, New York, 2003Google Scholar
  11. 11.
    He, B.S., Liao, L.Z.: Improvements of some projection methods for monotone nonlinear variational inequalities. J. Optim. Theory and Appl. 112, 111–128 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Khobotov, E.N.: A modification of the extragradient method for the solution of variational inequalities and some optimization problems. USSR Comput. Math. and Math. Phys. 27, 120–127 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Konnov, I.V.: Combined relaxation methods for finding equilbrium points and solving related problems. Russian Mathematics 37, 46–53 (1993)MathSciNetGoogle Scholar
  14. 14.
    Konnov, I.V.: Combined relaxation methods for variational inequalities. Springer Verlag, Berlin, 2001Google Scholar
  15. 15.
    Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekonomie. i Mathematik Metody 12, 746–756 (1976). [english translation: Matecon 13, 35–49 (1977)]Google Scholar
  16. 16.
    Nemirovsky, A.: Prox-method with rate of convergence O(1/k) for smooth variational inequalities and saddle point problems. Draft of 30/01/03Google Scholar
  17. 17.
    Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ, 1970Google Scholar
  19. 19.
    Rockafellar, R.T.: Monotone operators and augmented Lagrangians in nonlinear programming. In: O. L. Mangasarian, et al. (eds.), “Nonlinear Programming 3”, Academic Press, New York, 1978, pp. 1–25Google Scholar
  20. 20.
    Rockafellar, R.T.: Linear-Quadratic Programming and Optimal Control. SIAM J. Control and Optim. 25, 781–814 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Rockafellar, R.T., B Wets, R.J.: Variational Analysis. Springer Verlag, New York, 1998Google Scholar
  22. 22.
    Rockafellar, R.T., B Wets, R.J.: A Lagrangian finite generatioon technique for solving linear-quadratic problems in stochastic programming. Math. Programming Studies 28, 63–93 (1986)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Sibony, M.: Methodes itératives pour les equations et inequations aux dérivees partielles non linéaires de type monotone. Calcolo 7, 65–183 (1970)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Teboulle, M.: Convergence of Proximal-like Algorithms. SIAM J. Optim. 7, 1069–1083 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Tseng, P.: Alternating projection-proximal methods for convex programming and variational inequalities. SIAM J. Optim. 7, 951–965 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38 (2), 431–446 (2000)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Weisstein, E.W.: Cubic Equation. From MathWorld–A Wolfram Web Resource,

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Departement de MathematiquesUniversity Lyon ILyonFrance
  2. 2.School of Mathematical SciencesTel-Aviv UniversityRamat-AvivIsrael

Personalised recommendations