Mathematical Programming

, Volume 102, Issue 2, pp 249–259 | Cite as

A linear algorithm for integer programming in the plane



We show that a 2-variable integer program, defined by m constraints involving coefficients with at most φ bits, can be solved with O(m+φ) arithmetic operations on rational numbers of size O(φ).


Mathematical Method Integer Program Rational Number Arithmetic Operation Linear Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Reading: Addison-Wesley, 1974Google Scholar
  2. 2.
    Banaszczyk, W., Litvak, A.E., Pajor, A., Szarek, S.J.: The flatness theorem for nonsymmetric convex bodies via the local theory of Banach spaces. Math. Oper. Res. 24 (3), 728–750 (1999)MATHMathSciNetGoogle Scholar
  3. 3.
    Barvinok, A.: A course in convexity. vol. 54 of Graduate Studies in Mathematics. Providence, RI: Am. Math. Soc. 2002Google Scholar
  4. 4.
    Clarkson, K.L.: Las Vegas algorithms for linear and integer programming when the dimension is small. J. Assoc. Comput. Mach. 42, 488–499 (1995)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Eisenbrand, F.: Fast integer programming in fixed dimension. In: Proceedings of the 11th Annual European Symposium on Algorithms, ESA’ 2003, G.D. Battista, U. Zwick (eds.), vol. 2832 of LNCS, Springer, 2003. To appear in ComputingGoogle Scholar
  6. 6.
    Eisenbrand, F., Rote, G.: Fast 2-variable integer programming. In: Integer Programming and Combinatorial Optimization, IPCO 2001, K. Aardal, B. Gerards (eds.), vol. 2081 of LNCS, Springer, 2001, pp. 78–89Google Scholar
  7. 7.
    Eisenbrand, F.: Short vectors of planar lattices via continued fractions. Inf. Proc. Lett. 79 (3), 121–126 (2001)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Feit, S.D.: A fast algorithm for the two-variable integer programming problem. J. Assoc. Comput. Mach. 31 (1), 99–113 (1984)MATHMathSciNetGoogle Scholar
  9. 9.
    Gauß, C.F.: Disquisitiones arithmeticae. Gerh. Fleischer Iun., 1801Google Scholar
  10. 10.
    Hirschberg D.S., Wong, C.K.: A polynomial algorithm for the knapsack problem in two variables. J. Assoc. Comput. Mach. 23 (1), 147–154 (1976)MATHMathSciNetGoogle Scholar
  11. 11.
    Kanamaru, N., Nishizeki, T., Asano, T.: Efficient enumeration of grid points in a convex polygon and its application to integer programming. Inter. J. Comput. Geo. Appl. 4 (1), 69–85 (1994)MATHMathSciNetGoogle Scholar
  12. 12.
    Kannan R., Lovász, L.: Covering minima and lattice-point-free convex bodies. An. Math. 128, 577–602 (1988)MathSciNetGoogle Scholar
  13. 13.
    Kannan, R.: A polynomial algorithm for the two-variable integer programming problem. J. Assoc. Comp. Mach. 27 (1), 118–122 (1980)MATHMathSciNetGoogle Scholar
  14. 14.
    Khintchine, A.Y.: Continued Fractions. Noordhoff, Groningen, 1963Google Scholar
  15. 15.
    Knuth, D.: The art of computer programming. vol. 2. Addison-Wesley, 1969Google Scholar
  16. 16.
    Lagarias, J.C.: Worst-case complexity bounds for algorithms in the theory of integral quadratic forms. J. Algor. 1, 142–186 (1980)MathSciNetMATHGoogle Scholar
  17. 17.
    Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8 (4), 538–548 (1983)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. Assoc. Comp. Mach. 31, 114–127 (1984)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Scarf, H.E.: Production sets with indivisibilities. Part I: generalities. Econometrica 49, 1–32 (1981)MATHMathSciNetGoogle Scholar
  20. 20.
    Scarf, H.E.: Production sets with indivisibilities. Part II: The case of two activities. Econometrica 49, 395–423 (1981)MATHMathSciNetGoogle Scholar
  21. 21.
    Schönhage, A.: Fast reduction and composition of binary quadratic forms. In: Inter. Symp. Symb. Alg. Comp. ISSAC 91, ACM Press, 1991, pp. 128–133Google Scholar
  22. 22.
    Schrijver, A.: Theory of Linear and Integer Programming. John Wiley, 1986Google Scholar
  23. 23.
    Zamanskij, L.Y., Cherkasskij, V.D.: A formula for determining the number of integral points on a straight line and its application. Ehkon. Mat. Metody (in Russian). 20, 1132–1138 (1984)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations