Mathematical Programming

, Volume 100, Issue 1, pp 217–245 | Cite as

On the superlinear local convergence of a filter-SQP method

Article

Abstract.

Transition to superlinear local convergence is shown for a modified version of the trust-region filter-SQP method for nonlinear programming introduced by Fletcher, Leyffer, and Toint [8]. Hereby, the original trust-region SQP-steps can be used without an additional second order correction. The main modification consists in using the Lagrangian function value instead of the objective function value in the filter together with an appropriate infeasibility measure. Moreover, it is shown that the modified trust-region filter-SQP method has the same global convergence properties as the original algorithm in [8].

Key words.

nonlinear programming superlinear convergence global convergence filter SQP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertsekas, D.P.: Constrained optimization and Lagrange multiplier methods. Computer Science and Applied Mathematics, Academic Press Inc., New York, 1982Google Scholar
  2. 2.
    Boggs, P.T., Tolle, J.W.: Sequential quadratic programming. In: Acta numerica, Acta Numer., Cambridge Univ. Press, Cambridge, 1995, pp. 1–51Google Scholar
  3. 3.
    Chin, C.M, Fletcher, R.: Numerical results for SLPSQP. Filter-SQP and LANCELOT on selected Cute test problems, Tech. Report NA/203, Department of Mathematics, Dundee University, Dundee, Scotland, 2001Google Scholar
  4. 4.
    Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-region methods. MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000Google Scholar
  5. 5.
    Facchinei, F., Lucidi, S.: Quadratically and superlinearly convergent algorithms for the solution of inequality constrained minimization problems. J. Optim. Theory Appl. 85, 265–289 (1995)MathSciNetMATHGoogle Scholar
  6. 6.
    Fletcher, R., Gould, N.I.M., Leyffer, S., Toint, P.L., Wächter, A.: Global convergence of a trust-region SQP-filter algorithm for general nonlinear programming. SIAM J. Optim. 13, 635–659 (2002)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Program. 91, 239–269 (2002)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Fletcher, R., Leyffer, S., Toint, P.L.: On the global convergence of a filter–SQP algorithm. SIAM J. Optim. 13, 44–59 (2002)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Glad, T., Polak, E.: A multiplier method with automatic limitation of penalty growth. Math. Program. 17, 140–155 (1979)MathSciNetMATHGoogle Scholar
  10. 10.
    Gonzaga, C.C., Karas, E., Vanti, M.: A globally convergent filter method for nonlinear programming. Technical Report, Department of Mathematics, Federal University of Santa Catarina, Brazil, 2001 (Revised 2002)Google Scholar
  11. 11.
    Lucidi, S.: New results on a continuously differentiable exact penalty function. SIAM J. Optim. 2, 558–574 (1992)MathSciNetMATHGoogle Scholar
  12. 12.
    Nocedal, J., Wright, S.J.: Numerical optimization. Springer Series in Operations Research, Springer-Verlag, New York, 1999Google Scholar
  13. 13.
    Toint, P.L.: Non-monotone filter methods. Presentation at the SIAM Conference on Optimization, Toronto, Canada, May 20–22, 2002Google Scholar
  14. 14.
    Ulbrich, M., Ulbrich, S.: Non-monotone trust region methods for nonlinear equality constrained optimization without a penalty function. Math. Program. 95, 103–135 (2003)CrossRefGoogle Scholar
  15. 15.
    Ulbrich, M., Ulbrich, S., Vicente, L.N.: A globally convergent primal-dual interior-point filter method for nonconvex nonlinear programming. Technical Report TR00-12, Department of Computational and Applied Mathematics, Rice University, Houston, Texas 77005-1892, 2000 (Revised 2002)Google Scholar
  16. 16.
    Wächter, A., Biegler, L.T.: Global and local convergence of line search filter methods for nonlinear programming. CAPD Technical Report B-01-09, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, 2001 (Revised 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Zentrum Mathematik M1Technische Universität MünchenGarching b. MünchenGermany

Personalised recommendations