Mathematical Programming

, Volume 101, Issue 3, pp 415–433 | Cite as

Conjugacy relationship between M-convex and L-convex functions in continuous variables

Article

Abstract.

By extracting combinatorial structures in well-solved nonlinear combinatorial optimization problems, Murota (1996,1998) introduced the concepts of M-convexity and L-convexity to functions defined over the integer lattice. Recently, Murota–Shioura (2000, 2001) extended these concepts to polyhedral convex functions and quadratic functions in continuous variables. In this paper, we consider a further extension to more general convex functions defined over the real space, and provide a proof for the conjugacy relationship between general M-convex and L-convex functions.

Keywords

combinatorial optimization matroid base polyhedron convex function convex analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aczel, J.: Lectures on Functional Equations and Their Applications. Academic Press, New York, 1966Google Scholar
  2. 2.
    Camerini, P.M., Conforti, M., Naddef, D.: Some easily solvable nonlinear integer programs. Ricerca Operativa 50, 11–25 (1989)Google Scholar
  3. 3.
    Danilov, V., Koshevoy, G., Murota, K.: Discrete convexity and equilibria in economies with indivisible goods and money. Math. Social Sci. 41, 251–273 (2001)CrossRefMATHGoogle Scholar
  4. 4.
    Favati, P., Tardella, F.: Convexity in nonlinear integer programming. Ricerca Operativa 53, 3–44 (1990)Google Scholar
  5. 5.
    Fujishige, S., Murota, K.: Notes on L-/M-convex functions and the separation theorems. Math. Program. 88, 129–146 (2000)CrossRefGoogle Scholar
  6. 6.
    Iri, M.: Network Flow, Transportation and Scheduling – Theory and Algorithms. Academic Press, New York, 1969Google Scholar
  7. 7.
    Lovász, L.: Submodular functions and convexity. In: Bachem, A., Grötschel, M., Korte, B., (eds.), Mathematical Programming – The State of the Art. Springer, Berlin, 1983, pp. 235–257Google Scholar
  8. 8.
    Miller, B.L.: On minimizing nonseparable functions defined on the integers with an inventory application. SIAM J. Appl. Math. 21, 166–185 (1971)MATHGoogle Scholar
  9. 9.
    Murota, K.: Convexity and Steinitz’s exchange property. Adv. Math. 124, 272–311 (1996)CrossRefMATHGoogle Scholar
  10. 10.
    Murota, K.: Discrete convex analysis. Math. Program. 83, 313–371 (1998)CrossRefGoogle Scholar
  11. 11.
    Murota, K.: Matrices and Matroids for Systems Analysis. Springer, Berlin, 2000Google Scholar
  12. 12.
    Murota, K.: Discrete Convex Analysis – An Introduction. Kyoritsu Publishing Co., Tokyo [In Japanese], 2001Google Scholar
  13. 13.
    Murota, K.: Discrete Convex Analysis. Society for Industrial and Applied Mathematics, Philadelphia, 2003Google Scholar
  14. 14.
    Murota, K., Shioura, A.: M-convex function on generalized polymatroid. Math. Oper. Res. 24, 95–105 (1999)MATHGoogle Scholar
  15. 15.
    Murota, K., Shioura, A.: Extension of M-convexity and L-convexity to polyhedral convex functions. Adv. Appl. Math. 25, 352–427 (2000)CrossRefMATHGoogle Scholar
  16. 16.
    Murota, K., Shioura, A.: Quadratic M-convex and L-convex functions. RIMS preprint, No. 1326, Kyoto University. Adv. Appl. Math., to appear (2004)Google Scholar
  17. 17.
    Murota, K., Shioura, A.: Fundamental properties of M-convex and L-convex functions in continuous variables. IEICE Trans. Fundamentals, to appearGoogle Scholar
  18. 18.
    Murota, K., Tamura, A.: New characterizations of M-convex functions and their applications to economic equilibrium models with indivisibilities. Discrete Appl. Math. 131, 495–512 (2003)CrossRefMATHGoogle Scholar
  19. 19.
    Murota, K., Tamura, A.: Application of M-convex submodular flow problem to mathematical economics. Japan J. Indust. Appl. Math. 20, 257–277 (2003)MATHGoogle Scholar
  20. 20.
    Rockafellar, R.T.: Convex Analysis. Princeton Univ. Press, Princeton, 1970Google Scholar
  21. 21.
    Rockafellar, R.T.: Network Flows and Monotropic Optimization. Wiley, New York, 1984Google Scholar
  22. 22.
    Roberts, A.W., Varberg, D.E.: Convex Functions. Academic Press, New York, 1973Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  1. 1.Graduate School of Information Science and TechnologyUniversity of TokyoTokyoJapan
  2. 2.Graduate School of Information SciencesTohoku UniversitySendaiJapan
  3. 3.PRESTO, JSTTokyoJapan

Personalised recommendations