Mathematical Programming

, Volume 98, Issue 1–3, pp 369–384 | Cite as

Detecting symmetries by branch & cut

Article

Abstract.

The NP-hard problem of finding symmetries in an abstract graph plays an important role in automatic graph drawing and other applications. In this paper, we present an exact algorithm for automorphism and symmetry detection based on the branch & cut technique. We introduce IP-models for these problems and investigate the structure of the corresponding polytopes. For automorphisms, a complete description of the polytope is derived from a given set of generators of the automorphism group. The rotation polytopes are shown to be related to the asymmetric traveling salesman polytope, while the reflection polytope is related to the matching polytope. The algorithm was implemented within the ABACUS-framework and proves to run fast in practice.

Keywords

Symmetry integer programming branch & cut 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abelson, D., Hong, S., Taylor, D.: A group-theoretic method for drawing graphs symmetrically. In: Goodrich, M., Kobourov, S. (eds)., Graph Drawing 2002, volume 2528 of Lecture Notes in Computer Science pp. 86–97, Springer-Verlag, 2002Google Scholar
  2. 2.
    Balas, E.: The asymmetric assignment problem and some new facets of the traveling salesman polytope on a directed graph. SIAM J. Discrete Math. 2, 425–451 (1989)Google Scholar
  3. 3.
    Balas, E., Fischetti, M.: A lifting procedure for the asymmetric traveling salesman polytope and a large class of new facets. Math. Program. 58, 325–352 (1993)Google Scholar
  4. 4.
    Balinski, M., Russakoff, A.: On the assignment polytope. SIAM Rev. 16, 516–525 (1974)Google Scholar
  5. 5.
    Benczúr, A., Fülöp, O.: Fast algorithms for even/odd minimum cuts and generalizations. In: ESA, pp. 88–99, (2000)Google Scholar
  6. 6.
    Birkhoff, G.: Tres observaciones sobre el algebra lineal. Revista Facultad de Ciencias Exactas, Puras y Applicadas Universidad Nacional de Tucuman Serie A (Matematicas y Fisica Teoretica) 5, 147–151 (1946)Google Scholar
  7. 7.
    Carr, H., Kocay, W.: An algorithm for drawing a graphy symmetrically. Bulletin of the ICA 27, 19–25 (1999)Google Scholar
  8. 8.
    Chen, H., Lu, H., Yen, H.: On Maximum Symmetric Subgraphs. In: Marks, J., (ed)., Graph Drawing 2000, volume 1984 of Lecture Notes in Computer Science, p. 372–383 Springer-Verlag, 2001Google Scholar
  9. 9.
    Eades, P., Lin, X.: Spring algorithms and symmetry. Theor. Comput. Sci. 240(2), 379–405 (2000)Google Scholar
  10. 10.
    Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)Google Scholar
  11. 11.
    de Fraysseix, H.: An heuristic for graph symmetry detection. In: Kratochvil, J., (ed)., Graph Drawing `99, volume 1731 of Lecture Notes in Computer Science, pp. 276–285. Springer-Verlag, 1999Google Scholar
  12. 12.
    Goemans, M., Ramakrishnan, V.: Minimizing submodular functions over families of sets. Combinatorica 15(4), 499–513 (1995)Google Scholar
  13. 13.
    Grötschel, M. Lovász, L., and Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer-Verlag, 1988Google Scholar
  14. 14.
    Grötschel, M., Padberg, M.: Polyhedral theory. In: Lawler, E., Lenstra, J., Rinnooy Kan, A., Shmoys, D. (eds)., The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, pp. 251–305 John Wiley & Sons, 1985Google Scholar
  15. 15.
    Hardy, G., Wright, E.: An introduction to the theory of numbers. Clarendon Press, 1938Google Scholar
  16. 16.
    Hong, S., Eades, P.: Drawing Planar Graphs Symmetrically II: Biconnected graphs. CS-IVG-2001-01, University of Sydney 2001Google Scholar
  17. 17.
    Hong, S., Eades, P.: Drawing Planar Graphs Symmetrically III: Oneconnected Graphs. CS-IVG-2001-02, University of Sydney, 2001Google Scholar
  18. 18.
    Hong, S., Eades, P.: Drawing Planar Graphs Symmetrically IV: Disconnected Graphs. CS-IVG-2001-03, University of Sydney, 2001Google Scholar
  19. 19.
    Hong, S., McKay, B., Eades, P.: Symmetric drawings of triconnected planar graphs. SODA 2002, pp. 356–365, (2002)Google Scholar
  20. 20.
    Jünger, M., Thienel, S.:The ABACUS system for branch-and-cut-and-price-algorithms in integer programming and combinatorial optimization. Softw. Pract. Exper. 30(11), 1325–1352 (2000)Google Scholar
  21. 21.
    Klin, M., Rücker, C., Rücker, G., Tinhofer, G.: Algebraic combinatorics in mathematical chemistry. Methods and Algorithms. I. Permutation groups and coherent (cellular) algebras. Technische Universität München, Fakultät für Mathematik, 1995Google Scholar
  22. 22.
    Lubiw, A.: Some NP-Complete problems similar to graph isomorphism. SIAM J. Comput. 10(1), 11–21 (1981)Google Scholar
  23. 23.
    Manning, J.: Computational complexity of geometric symmetry detection in graphs. In: Great Lakes Computer Science Conference, volume 507 of Lecture Notes in Computer Science, pp. 1–7. Springer-Verlag, 1990Google Scholar
  24. 24.
    McKay, B.: nauty user's guide. Tecmnical Report TR-CS-90-02, Computer Science Department, Australian National University, 1990Google Scholar
  25. 25.
    Padberg, M., Rao, M.: Odd minimum cut-sets and b-matchings. Math. Oper. Res. 7, 67–80 (1982)Google Scholar
  26. 26.
    Purchase, H.: Which aesthetic has the greatest effect on human understanding? In: Di Battista, G., (ed), Graphy Drawing '97, volume 1353 of Lecture Notes in Computer Science, pp. 248–261. Springer-Verlag, 1997Google Scholar
  27. 27.
    Read, R., Corneil, D.: The graph isomorphism disease. J. Graph Theory 1, 339–363 (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Institut für InformatikUniversität zu KölnKölnGermany

Personalised recommendations