Mathematical Programming

, Volume 98, Issue 1–3, pp 281–307 | Cite as

An algorithm for mixed integer optimization

Article

Abstract.

This paper introduces a new algorithm for solving mixed integer programs. The core of the method is an iterative technique for changing the representation of the original mixed integer optimization problem.

Keywords

Mixed integer programming primal methods integral basis method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aardal, K., Hurkens, C.A.J., Lenstra, A.K.: Solving a system of diophantine equations with lower and upper bounds on the variables. Mathematics of Operations Research 25, 427–442 (2000)Google Scholar
  2. 2.
    Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Mathematical Programming 58, 295–324 (1993)Google Scholar
  3. 3.
    Bertsimas, D., Weismantel, R.: Optimization over integers. Book in preparation, 2002Google Scholar
  4. 4.
    Gentile, C., Haus, U.-U., Köppe, M., Rinaldi, G., Weismantel, R.: On the way to perfection: A new combinatorial algorithm for stable sets in graphs. To appear in M. Grötschel, editor, The Sharpest Cut, Festschrift in honor of Manfred Padberg, MPS/SIAM, preprint available from URL http://www.math.uni-magdeburg.de/~mkoeppe/art/primstab.ps, 2002
  5. 5.
    Gomory, R.E.: An algorithm for the mixed integer problem. Technical Report RM-2597-PR, The RAND Corporation, Santa Monica, CA, 1960Google Scholar
  6. 6.
    Gomory, R.E.: An all-integer integer programming algorithm. In: Muth, J.F., Thompson, G.L. (eds), Industrial Scheduling: (Papers presented at a Conference on ``Factory Scheduling'' held at the Graduate School of Industrial Administration at Carnegie Institute of Technology, May 10–12, 1961), Prentice-Hall international series in management, p. 193–206. Prentice Hall, Englewood Cliffs, N.J., 1963Google Scholar
  7. 7.
    Haus, U.-U., Köppe, M., Weismantel, R.: The integral basis method for integer programming. Mathematical Methods of Operations Research 53(3), 353–361 (2001a)Google Scholar
  8. 8.
    Haus, U.-U., Köppe, M., Weismantel, R.: A primal all-integer algorithm based on irreducible solutions. To appear in Mathematical Programming Series~B, preprint available from URL http://www.math.uni-magdeburg.de/~mkoe ppe/art/haus-koeppe-weismantel-ibm-theory-rr.ps,~2001b
  9. 9.
    Henk, M., Köppe, M., Weismantel, R.: Integral decomposition of polyhedra and some applications in mixed integer programming. Mathematical Programming, Series B 94(2–3), 193–206 (2003)Google Scholar
  10. 10.
    Köppe, M.: Exact Primal Algorithms for General Integer and Mixed-Integer Linear Programs. Dissertation, Otto-von-Guericke-Universität Magdeburg, 2002. Published by Shaker Verlag, Aachen 2003Google Scholar
  11. 11.
    Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, Chichester, 1988Google Scholar
  12. 12.
    Young, R.D.: A simplified primal (all-integer) integer programming algorithm. Operations Research 16(4), 750–782 (1968)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Department of Mathematics/IMOOtto-von-Guericke-Universität MagdeburgMagdeburgGermany

Personalised recommendations