Mathematical Programming

, Volume 98, Issue 1–3, pp 201–221 | Cite as

Binary clutter inequalities for integer programs

Article

Abstract.

We introduce a new class of valid inequalities for general integer linear programs, called binary clutter (BC) inequalities. They include the \({{\{0, \frac{{1}}{{2}}\}}}\)-cuts of Caprara and Fischetti as a special case and have some interesting connections to binary matroids, binary clutters and Gomory corner polyhedra. We show that the separation problem for BC-cuts is strongly 𝒩𝒫-hard in general, but polynomially solvable in certain special cases. As a by-product we also obtain new conditions under which \({{\{0, \frac{{1}}{{2}}\}}}\)-cuts can be separated in polynomial time. These ideas are then illustrated using the Traveling Salesman Problem (TSP) as an example. This leads to an interesting link between the TSP and two apparently unrelated problems, the T-join and max-cut problems.

Keywords

Integer programming cutting planes matroid theory binary clutters traveling salesman problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Applegate, D., Bixby, R.E., Chvátal, V., Cook, W.: Finding cuts in the TSP (a preliminary report). Technical Report 95–05, DIMACS, Rutgers University, New Brunswick, NJGoogle Scholar
  2. 2.
    Aardal, K., Weismantel, R.: Polyhedral combinatorics. In: M. Dell'Amico, F. Maffioli, S. Martello (eds.) Annotated Bibliographies in Combinatorial Optimization. pp. 31–44. New York, WileyGoogle Scholar
  3. 3.
    Barahona, F.: The max-cut problem in graphs not contractible to K 5. Oper. Res. Lett. 2, 107–111 (1983)Google Scholar
  4. 4.
    Barahona, F., Grötschel, M.: On the cycle polytope of a binary matroid. J. Comb. Th. (B). 40, 40–62 (1986)Google Scholar
  5. 5.
    Caprara, A., Fischetti, M.: 0, ½-Chvátal-Gomory cuts. Math. Program. 74, 221–235 (1996)Google Scholar
  6. 6.
    Caprara, A., Fischetti, M., Letchford, A.N.: On the separation of maximally violated mod-k cuts. Math. Program. 87, 37–56 (2000)Google Scholar
  7. 7.
    Caprara, A., Letchford, A.N.: On the separation of split cuts and related inequalities. Math. Program. 94, 279–294 (2003)Google Scholar
  8. 8.
    Chen, D.S., Zionts, S.: Comparison of some algorithms for solving the group theoretic programming problem. Oper. Res. 24, 1120–1128 (1976)Google Scholar
  9. 9.
    Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discr. Math. 4, 305–337 (1973)Google Scholar
  10. 10.
    Chvátal, V., Cook, W., Hartmann, M.: On cutting-plane proofs in combinatorial optimization. Lin. Alg. Appl. 114(115), 455–499 (1989)Google Scholar
  11. 11.
    Cornuéjols, G., Guenin, B.: Ideal binary clutters, connectivity, and a conjecture of Seymour. SIAM J. Discr. Math. 15, 329–352 (2002)Google Scholar
  12. 12.
    Cornuéjols, G., Li, Y.: Elementary closures for integer programs. Oper. Res. Letts 28, 1–8 (2001)Google Scholar
  13. 13.
    Edmonds, J., Johnson, E.L.: Matching, Euler tours and the Chinese postman. Math. Program. 5, 88–124 (1973)Google Scholar
  14. 14.
    Gastou, G., Johnson, E.L.: Binary group and chinese postman polyhedra. Math. Program. 34, 1–33 (1986)Google Scholar
  15. 15.
    Gomory, R.E.: On the relation between integer and non-integer solutions to linear programs. Proc. Nat. Acad. Sci., 53, 260–265 (1965)Google Scholar
  16. 16.
    Gomory, R.E.: Some polyhedra related to combinatorial problems. Lin. Alg. Appl. 2, 451–558 (1969)Google Scholar
  17. 17.
    Grötschel, M., Pulleyblank, W.R.: Weakly bipartite graphs. Oper. Res. Lett. 1, 23–27 (1981)Google Scholar
  18. 18.
    Grötschel, M., Lovász, L., Schrijver, A.J.: Geometric Algorithms and Combinatorial Optimization. Wiley: New York, 1988Google Scholar
  19. 19.
    Grötschel, M., Padberg, M.W.: On the symmetric travelling salesman problem I: inequalities. Math. Program. 16, 265–280 (1979)Google Scholar
  20. 20.
    Grötschel, M., Truemper, K.: Decomposition and optimization over cycles in binary matroids. J. Comb. Th. (B) 46, 306–337 (1989)Google Scholar
  21. 21.
    Guenin, B.: A characterization of weakly bipartite graphs. J. Comb. Th. (B) 83, 112–168 (2001)Google Scholar
  22. 22.
    Letchford, A.N.: Separating a superclass of comb inequalities in planar graphs. Math. Oper. Res. 25, 443–454 (2000)Google Scholar
  23. 23.
    Letchford, A.N., Lodi, A.: Polynomial-time separation of simple comb inequalities. In: W.J. Cook, A.S. Schulz (Eds.), Integer Programming and Combinatorial Optimization 9. Lecture Notes in Computer Science 2337, Springer-Verlag, Berlin/Heidelberg, 2002, pp. 96–111Google Scholar
  24. 24.
    Naddef, D.: Polyhedral theory and branch-and-cut algorithms for the symmetric TSP. In: G. Gutin, A. Punnen (eds.), The Traveling Salesman Problem and its Variations. Kluwer Academic Publishers, 2002Google Scholar
  25. 25.
    Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley: New York, 1988Google Scholar
  26. 26.
    Oxley, J.G.: Matroid Theory. Oxford Science Publications: Oxford, 1992Google Scholar
  27. 27.
    Padberg, M.W., Grötschel, M.: Polyhedral computations. In: E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Schmoys (Eds.) The Traveling Salesman Problem. John Wiley & Sons, Chichester, 1985Google Scholar
  28. 28.
    Padberg, M.W., Rao, M.R.: Odd minimum cut-sets and b-matchings. Math. Oper. Res. 7, 67–80 (1982)Google Scholar
  29. 29.
    Seymour, P.D.: The matroids with the max-flow min-cut property. J. Comb. Th. (B) 23, 189–222 (1977)Google Scholar
  30. 30.
    Seymour, P.D.: Decomposition of regular matroids. J. Comb. Th. (B) 28, 305–359 (1980)Google Scholar
  31. 31.
    Seymour, P.D.: Matroids and multicommodity flows. Eur. J. Comb. 2, 257–290 (1981)Google Scholar
  32. 32.
    Truemper, K.: Max-flow min-cut matroids: polynomial testing and polynomial algorithms for maximum flow and shortest routes. Math. Oper. Res. 12, 72–96 (1987)Google Scholar
  33. 33.
    Truemper, K.: A decomposition theory for matroids. IV: Decomposition of graphs. J. Comb. Th. (B) 45, 259–292 (1988)Google Scholar
  34. 34.
    Truemper, K.: Matroid Decomposition. Academic Press: San Diego, 1992Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Department of Management ScienceLancaster UniversityLancasterEngland

Personalised recommendations