Femtosecond lasers for high-precision orthopedic surgery

  • Simon A. Ashforth
  • Reece N. Oosterbeek
  • Owen L. C. Bodley
  • Catherine Mohr
  • Claude Aguergaray
  • M. Cather SimpsonEmail author
Original Article


Laser micromachining with ultrashort pulses has shown great promise for clean, safe surgical treatment of bone tissue. However, comparisons of performance and development of “best practice” have been hampered by the difficulty of comparing results across a wide variety of experimental approaches and under surgically irrelevant conditions (e.g., dried, dead bone). Using a femtosecond (fs) pulsed laser system (τ = 140 fs, repetition rate = 1 kHz, λ = 800 nm), a comprehensive study of femtosecond laser microsurgery using the standard metrics of laser micromachining (ablation threshold, incubation effects, ablation rates, effect of focal point depth within the material and heat affected zone (HAZ)) was conducted on live, freshly harvested bovine and ovine cortical bone. Three important points of optimism for future implementation in the surgical theatre were identified: (1) the removal of material is relatively insensitive to the focal point depth within the material, removing the need for extreme depth precision for excellent performance; (2) femtosecond laser ablation of fresh bone demonstrates very little incubation effect, such that multiple passes of the laser over the same region of bone removes the same amount of material; and (3) the complete absence of collateral damage, heat- or shock-induced, on both the macro- and microscopic scales can be achieved readily, within a broad parameter range. Taken together, these results indicate a handheld or robotic deployed fiber laser platform for femtosecond laser microsurgery is a very viable prospect.


Femtosecond microsurgery Orthopedic surgery Laser ablation Laser micromachining Ultrafast laser micromachining 



We thank Christina Cochrane from Kings School for her role in gathering the focal depth data. The authors would also like to acknowledge Intuitive Surgical for their support in this research.


Ministry of Business, Innovation and Employment Grants (MBIE) (UOAX1202, UOAX1416).

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    Hodgson RS, Wilson DF (1991) Argon laser stapedotomy. Laryngoscope 101(3):230–233. CrossRefPubMedGoogle Scholar
  2. 2.
    Lesinski SG, Stein JA (1989) CO2 laser stapedotomy. Laryngoscope 99(6 Pt 2 Suppl 46):20–24PubMedGoogle Scholar
  3. 3.
    Nuss RC, Fabian RL, Sarkar R, Puliafito CA (1988) Infrared laser bone ablation. Lasers Surg Med 8(4):381–391CrossRefGoogle Scholar
  4. 4.
    Murray AK, Dickinson MR (2004) Tissue ablation-rate measurements with a long-pulsed, fibre-deliverable 308 nm excimer laser. Lasers Med Sci 19(3):127–138. CrossRefPubMedGoogle Scholar
  5. 5.
    Jowett N, Wollmer W, Reimer R, Zustin J, Schumacher U, Wiseman PW, Mlynarek AM, Bottcher A, Dalchow CV, Lorincz BB, Knecht R, Miller RJD (2014) Bone ablation without thermal or acoustic mechanical injury via a novel picosecond infrared laser (PIRL). Otolaryng Head Neck 150(3):385–393. CrossRefGoogle Scholar
  6. 6.
    Stanislawki M, Meister J, Mitra T, Ivanenko MM, Zanger K, Hering P (2001) Hard tissue ablation with a free running Er:YAG and a Q-switched CO2 laser: a comparative study. Appl Phys B-Lasers O 72(1):115–120CrossRefGoogle Scholar
  7. 7.
    Ivanenko M, Werner M, Afilal S, Klasing M, Hering P (2005) Ablation of hard bone tissue with pulsed CO 2 lasers. Medical Laser Application 20(1):13–23CrossRefGoogle Scholar
  8. 8.
    Reinisch L, Mendenhall M, Charous S, Ossoff RH (1994) Computer-assisted surgical techniques using the Vanderbilt free electron laser. Laryngoscope 104(11):1323–1329CrossRefGoogle Scholar
  9. 9.
    Edwards G, Logan R, Copeland M, Reinisch L, Davidson J, Johnson B, Maciunas R, Mendenhall M, Ossoff R, Tribble J (1994) Tissue ablation by a free-electron laser tuned to the amide II band. Nature 371(6496):416CrossRefGoogle Scholar
  10. 10.
    Peavy GM, Reinisch L, Payne JT, Venugopalan V (1999) Comparison of cortical bone ablations by using infrared laser wavelengths 2.9 to 9.2 μm. Laser Surg Med 25(5):421–434CrossRefGoogle Scholar
  11. 11.
    Spencer P, Cobb CM, McCollum MH, Wieliczka DM (1996) The effects of CO2 laser and Nd:YAG with and without water/air surface cooling on tooth root structure: correlation between FTIR spectroscopy and histology. J Periodontal Res 31(7):453–462. CrossRefPubMedGoogle Scholar
  12. 12.
    Udiljak T, Ciglar D, Skoric S (2007) Investigation into bone drilling and thermal bone necrosis. Adv Prod Eng Manag 2(3):103–112Google Scholar
  13. 13.
    Pandey RK, Panda SS (2013) Drilling of bone: a comprehensive review. J Orthop Trauma 4(1):15–30. CrossRefGoogle Scholar
  14. 14.
    Firoozbakhsh K, Moneim MS, Mikola E, Haltom S (2003) Heat generation during ulnar osteotomy with microsagittal saw blades. IOWA Orthop J 23:46–50PubMedPubMedCentralGoogle Scholar
  15. 15.
    Lundskog J (1972) Heat and bone tissue. An experimental investigation of the thermal properties of bone and threshold levels for thermal injury. Scand J Plast Reconstr Surg 9:1–80PubMedGoogle Scholar
  16. 16.
    Eriksson RA, Albrektsson T, Magnusson B (1984) Assessment of bone viability after heat trauma. A histological, histochemical and vital microscopic study in the rabbit. Scand J Plast Reconstr Surg 18(3):261–268CrossRefGoogle Scholar
  17. 17.
    Eriksson (1984) The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber. J Oral Maxillofac Surg 42(11):705–711. CrossRefPubMedGoogle Scholar
  18. 18.
    Hoegel F, Mueller CA, Peter R, Pfister U, Suedkamp NP (2004) Bone debris: dead matter or vital osteoblasts. J Trauma 56(2):363–367. CrossRefPubMedGoogle Scholar
  19. 19.
    Boyne PJ (1966) Histologic response of bone to sectioning by high-speed rotary instruments. J Dent Res 45(2):270–276CrossRefGoogle Scholar
  20. 20.
    Moss RW (1964) Histopathologic reaction of bone to surgical cutting. Or Surg Or Med Or Pa 17:405–414CrossRefGoogle Scholar
  21. 21.
    Spatz S (1965) Early reaction in bone following the use of burs rotating at conventional and ultra speeds; a comparison study. Or Surg Or Med Or Pa 19:808–816CrossRefGoogle Scholar
  22. 22.
    Abouzgia MB, James DF (1997) Temperature rise during drilling through bone. Int J Oral Maxillofac Implants 12(3):342–353PubMedGoogle Scholar
  23. 23.
    Natali C, Ingle P, Dowell J (1996) Orthopaedic bone drills-can they be improved? Temperature changes near the drilling face. J Bone Joint Surg Br 78(3):357–362CrossRefGoogle Scholar
  24. 24.
    Oliveira N, Alaejos-Algarra F, Mareque-Bueno J, Ferres-Padro E, Hernandez-Alfaro F (2012) Thermal changes and drill wear in bovine bone during implant site preparation. A comparative in vitro study: twisted stainless steel and ceramic drills. Clin Oral Implants Res 23(8):963–969. CrossRefPubMedGoogle Scholar
  25. 25.
    Allan W, Williams ED, Kerawala CJ (2005) Effects of repeated drill use on temperature of bone during preparation for osteosynthesis self-tapping screws. Br J Oral Maxillofac Surg 43(4):314–319. CrossRefPubMedGoogle Scholar
  26. 26.
    Jochum RM, Reichart PA (2000) Influence of multiple use of Timedur-titanium cannon drills: thermal response and scanning electron microscopic findings. Clin Oral Implants Res 11(2):139–143CrossRefGoogle Scholar
  27. 27.
    Matthews LS, Hirsch C (1972) Temperatures measured in human cortical bone when drilling. J Bone Joint Surg Am 54(2):297–308CrossRefGoogle Scholar
  28. 28.
    Wiggins KL, Malkin S (1976) Drilling of bone. J Biomech 9(9):553–559. CrossRefPubMedGoogle Scholar
  29. 29.
    Kylen P, Stjernvall JE, Arlinger S (1977) Variables affecting drill-generated noise-levels in ear surgery. Acta Otolaryngol 84(3-4):252–259. CrossRefPubMedGoogle Scholar
  30. 30.
    Takamori K, Furukawa H, Morikawa Y, Katayama T, Watanabe S (2003) Basic study on vibrations during tooth preparations caused by high-speed drilling and Er:YAG laser irradiation. Lasers Surg Med 32(1):25–31. CrossRefPubMedGoogle Scholar
  31. 31.
    Momma C, Nolte S, Chichkov BN, Alvensleben F v, Tünnermann A (1997) Precise laser ablation with ultrashort pulses. Appl Surf Sci 109–110:15–19. CrossRefGoogle Scholar
  32. 32.
    Korte F, Adams S, Egbert A, Fallnich C, Ostendorf A, Nolte S, Will M, Ruske J-P, Chichkov BN, Tuennermann A (2000) Sub-diffraction limited structuring of solid targets with femtosecond laser pulses. Opt Express 7(2):41–49CrossRefGoogle Scholar
  33. 33.
    Nolte S, Chichkov B, Welling H, Shani Y, Lieberman K, Terkel H (1999) Nanostructuring with spatially localized femtosecond laser pulses. Opt Lett 24(13):914–916CrossRefGoogle Scholar
  34. 34.
    Ancona A, Döring S, Jauregui C, Röser F, Limpert J, Nolte S, Tünnermann A (2009) Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers. Opt Lett 34(21):3304–3306CrossRefGoogle Scholar
  35. 35.
    Nolte S, Kamlage G, Korte F, Bauer T, Wagner T, Ostendorf A, Fallnich C, Welling H (2000) Microstructuring with femtosecond lasers. Adv Eng Mater 2(1-2):23–27CrossRefGoogle Scholar
  36. 36.
    Niemz M (1996) Laser tissue interactions: fundamentals and applications. 3rd edn. Springer-Verlag Berlin and Heidelberg GmbH & Co., HeidelbergCrossRefGoogle Scholar
  37. 37.
    Rullière C (2005) Femtosecond laser pulses: principles and experiments. Advanced texts in physics, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  38. 38.
    Sugioka K, Cheng Y (2014) Ultrafast lasers-reliable tools for advanced materials processing. Light-Sci Appl 3. doi:ARTN e149
  39. 39.
    Cangueiro LT, Vilar R, Botelho do Rego AM, Muralha VSF (2012) Femtosecond laser ablation of bovine cortical bone. BIOMEDO 17(12):125005–125005. CrossRefGoogle Scholar
  40. 40.
    Wieger V, Zoppel S, Wintner E (2007) Ultrashort pulse laser osteotomy. Laser Phys 17(4):438–442. CrossRefGoogle Scholar
  41. 41.
    Nicolodelli G, Lizarelli RDZ, Bagnato VS (2012) Influence of effective number of pulses on the morphological structure of teeth and bovine femur after femtosecond laser ablation (vol 17, 048001, 2012). J Biomed Opt 17 (4). doi:Artn 049804
  42. 42.
    Emigh B, An R, Hsu EM, Crawford TH, Haugen HK, Wohl GR, Hayward JE, Fang Q (2012) Porcine cortical bone ablation by ultrashort pulsed laser irradiation. J Biomed Opt 17(2):028001. CrossRefPubMedGoogle Scholar
  43. 43.
    Girard B, Yu D, Armstrong MR, Wilson BC, Clokie CML, Miller RJD (2007) Effects of femtosecond laser irradiation on osseous tissues. Lasers Surg Med 39(3):273–285. CrossRefPubMedGoogle Scholar
  44. 44.
    Lim YC, Altman KJ, Farson DF, Flores KM (2009) Micropillar fabrication on bovine cortical bone by direct-write femtosecond laser ablation. J Biomed Opt 14 (6):064021-064021-064010. doi: CrossRefGoogle Scholar
  45. 45.
    Liu JM (1982) Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt Lett 7(5):196–198. CrossRefPubMedGoogle Scholar
  46. 46.
    Ashkenasi D, Lorenz M, Stoian R, Rosenfeld A (1999) Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation. Appl Surf Sci 150(1-4):101–106. CrossRefGoogle Scholar
  47. 47.
    Sun ZL, Lenzner M, Rudolph W (2015) Generic incubation law for laser damage and ablation thresholds. J Appl Phys 117 (7). doi:Artn 073102
  48. 48.
    Shaheen ME, Gagnon JE, Fryer BJ (2014) Femtosecond laser ablation behavior of gold, crystalline silicon, and fused silica: a comparative study. Laser Phys 24 (10). doi:Artn 106102
  49. 49.
    Di Niso F, Gaudiuso C, Sibillano T, Mezzapesa FP, Ancona A, Lugara PM (2014) Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates. Opt Express 22(10):12200–12210. CrossRefPubMedGoogle Scholar
  50. 50.
    Oosterbeek RN, Corazza C, Ashforth S, Simpson MC (2016) Effects of dopant type and concentration on the femtosecond laser ablation threshold and incubation behaviour of silicon. Appl Phys A-Mater 122(4):1–10. CrossRefGoogle Scholar
  51. 51.
    Shaheen ME, Gagnon JE, Fryer BJ (2016) Excimer laser ablation of aluminum: influence of spot size on ablation rate. Laser Phys 26 (11). doi:Artn 116102
  52. 52.
    Daengngam C, Kandas I, Ashry I, Wang AB, Heflin JR, Xu Y (2015) Fabrication and characterization of periodically patterned silica fiber structures for enhanced second-order nonlinearity. Opt Express 23(6):8113–8127. CrossRefPubMedGoogle Scholar
  53. 53.
    Dorronsoro C, Siegel J, Remon L, Marcos S (2008) Suitability of filofocon A and PMMA for experimental models in excimer laser ablation refractive surgery. Opt Express 16(25):20955–20967. CrossRefPubMedGoogle Scholar
  54. 54.
    Shaheen ME, Gagnon JE, Fryer BJ (2015) Experimental study on 785 nm femtosecond laser ablation of sapphire in air. Laser Phys Lett 12 (6). doi:Artn 066103
  55. 55.
    Kang H, Oh J, Welch A (2008) Investigations on laser hard tissue ablation under various environments. Phys Med Biol 53(12):3381CrossRefGoogle Scholar
  56. 56.
    Hicks JM, Singla A, Shen FH, Arlet V (2010) Complications of pedicle screw fixation in scoliosis surgery: a systematic review. Spine 35(11):E465–E470. CrossRefPubMedGoogle Scholar
  57. 57.
    Wevers HW, Espin E (1987) Orthopaedic saw blades: a case study. J Arthroplasty 2:43–46CrossRefGoogle Scholar
  58. 58.
    Liu Y, Niemz M (2007) Ablation of femural bone with femtosecond laser pulses—a feasibility study. Lasers Med Sci 22(3):171–174. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsThe University of AucklandAucklandNew Zealand
  2. 2.School of Chemical SciencesThe University of AucklandAucklandNew Zealand
  3. 3.The Photon FactoryThe University of AucklandAucklandNew Zealand
  4. 4.The MacDiarmid Institute for Advanced Materials and Nanotechnology & The Dodd Walls Centre for Photonic and Quantum TechnologiesAucklandNew Zealand
  5. 5.Intuitive Surgical Inc.1020 Kifer RoadSunnyvaleUSA

Personalised recommendations