Photobiomodulation via multiple-wavelength radiations

  • Andrezza Maria Côrtes Thomé LimaEmail author
  • Luiz Philippe da Silva Sergio
  • Adenilson de Souza da Fonseca
Review Article


Photobiomodulation via a combination of different radiations can produce different effects on biological tissues, such as cell proliferation and differentiation, when compared to those produced via a single radiation. The present study aims to conduct a review of the literature addressing the results and applications of photobiomodulation induced by a combination of two or more radiations as well as their possible effects. PubMed was used to search for studies with restrictions on the year (< 50 years old) and language (English), including studies using human and animal models, either under healthy or pathologic conditions. Several studies have been conducted to evaluate the combination of different radiation effects on cells and biological tissues. Positive effects resulting from multiple-wavelength radiations could be attributed to different absorption levels because superficial and deep tissues could absorb different levels of radiations. Multiple-wavelength radiations from devices combining radiations emitted by low power lasers and light-emitting diodes could be a new approach for promoting photobiomodulation-induced beneficial effects.


Photobiomodulation Low power laser Multi-wavelength LED 


Funding information

This study was funded by Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Universidade do Estado do Rio de Janeiro (UERJ).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Heiskanen V, Hamblin MR (2018) Photobiomodulation: lasers vs. light emitting diodes? Photochem Photobiol Sci 17(8):1003–1017PubMedPubMedCentralGoogle Scholar
  2. 2.
    Solmaz H, Ulgen Y, Gulsoy M (2017) Photobiomodulation of wound healing via visible and infrared laser irradiation. Lasers Med Sci 32(4):903–910PubMedGoogle Scholar
  3. 3.
    Gavish L, Houreld NN (2019) Therapeutic efficacy of home-use photobiomodulation devices: a systematic literature review. Photomed Laser Surg 37(1):4–16Google Scholar
  4. 4.
    de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22(3):7000417PubMedPubMedCentralGoogle Scholar
  5. 5.
    Fekrazad R, Asefi S, Eslaminejad MB, Taghiar L, Bordbar S, Hamblin MR (2019) Photobiomodulation with single and combination laser wavelengths on bone marrow mesenchymal stem cells: proliferation and differentiation to bone or cartilage. Lasers Med Sci 34(1):115–126PubMedGoogle Scholar
  6. 6.
    da Fonseca AS (2019) Is there a measure for low power laser dose? Lasers Med Sci 34(1):223–234PubMedGoogle Scholar
  7. 7.
    Zein R, Selting W, Hamblin MR (2018) Review of light parameters and photobiomodulation efficacy: dive into complexity. J Biomed Opt 23(12):1–17PubMedGoogle Scholar
  8. 8.
    Menezes S, Coulomb B, Leberton C, Duberteret L (1998) Non-coherent near infrared radiation protects normal human dermal fibroblasts from solar ultraviolet toxicity. J Invest Dermatol 111(4):629–633PubMedGoogle Scholar
  9. 9.
    Santos NR, de M Sobrinho JB, Almeida PF, Ribeiro AA, Cangussú MC, dos Santos JN, Pinheiro AL (2011) Influence of the combination of infrared and red laser light on the healing of cutaneous wounds infected by Staphylococcus aureus. Photomed Laser Surg 29(3):177–182PubMedGoogle Scholar
  10. 10.
    Walker J (2011) Fundamentals of physics. Wiley, HobokenGoogle Scholar
  11. 11.
    Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49(1):1–17PubMedGoogle Scholar
  12. 12.
    Niemz MH (2007) Laser-tissue interactions: fundamentals and applications. Springer-Verlag, New YorkGoogle Scholar
  13. 13.
    Passarella S, Karu T (2014) Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J Photochem Photobiol B 140:344–358PubMedGoogle Scholar
  14. 14.
    Karu T (1987) Biostimulation of HeLa cells by low-intensity visible light: V. Stimulation of cell proliferation in vitro by He-Ne laser radiation II Nuovo cimento D. 9:1485–1494Google Scholar
  15. 15.
    Karu TI (2010) Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 62(8):607–610PubMedGoogle Scholar
  16. 16.
    Hamblin MR (2018) Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol 94(2):199–212PubMedPubMedCentralGoogle Scholar
  17. 17.
    Poyton RO, Ball KA (2011) Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome c oxidase. Discov Med 11(57):154–159PubMedGoogle Scholar
  18. 18.
    Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84(5):1091–1099PubMedGoogle Scholar
  19. 19.
    Hamblin MR, Ferraresi C, Huang Y, de Freitas L, Carroll JD (2018) Low-level light therapy: photobiomodulation. SPIE Press, WashingtonGoogle Scholar
  20. 20.
    Laakso L, Richardson C, Cramond T (1993) Factors affecting low level laser therapy. Aust J Physiother 39(2):95–99PubMedGoogle Scholar
  21. 21.
    Hamblin MR (2017) Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys 4(3):337–361PubMedPubMedCentralGoogle Scholar
  22. 22.
    Martins WA, Polignano GAC, Guimarães OR, Geller M, Paoli F, Fonseca AS (2015) Dichromatic laser radiation effects on DNA of Escherichia coli and plasmids. Laser Phys 25(4):045603Google Scholar
  23. 23.
    Thomé AMC, Souza BP, Mendes JPM, Soares LC, Trajano ETL, Fonseca AS (2017) Dichromatic and monochromatic laser radiation effects on survival and morphology of Pantoea agglomerans. Laser Phys 27(5):055602Google Scholar
  24. 24.
    Thomé AMC, Souza BP, Mendes JPM, Cardoso AFR, Soares LC, Trajano ETL et al (2018) Dichromatic and monochromatic laser radiation effects on antibiotic resistance, biofilm formation, and division rate of Pantoea agglomerans. Laser Phys 28(6):065606Google Scholar
  25. 25.
    Ashrafi M, Novak-Frazer L, Bates M, Baguneid M, Alonso-Rasgado T, Xia G et al (2018) Validation of biofilm formation on human skin wound models and demonstration of clinically translatable bacteria-specific volatile signatures. Sci Rep 8(1):9431PubMedPubMedCentralGoogle Scholar
  26. 26.
    Jahangiri Noudeh Y, Shabani M, Vatankhah N, Hashemian SJ, Akbari K (2010) A combination of 670 nm and 810 nm diode lasers for wound healing acceleration in diabetic rats. Photomed Laser Surg 28(5):621–627PubMedGoogle Scholar
  27. 27.
    Mendez TM, Pinheiro AL, Pacheco MT, Nascimento PM, Ramalho LM (2004) Dose and wavelength of laser light have influence on the repair of cutaneous wounds. J Clin Laser Med Surg 22(1):19–25PubMedGoogle Scholar
  28. 28.
    Barikbin B, Khodamrdi Z, Kholoosi L, Akhgri MR, Haj Abbasi M, Hajabbasi M, Razzaghi Z, Akbarpour S (2017) Comparison of the effects of 665 nm low level diode laser hat versus and a combination of 665 nm and 808nm low level diode laser scanner of hair growth in androgenic alopecia. J Cosmet Laser Ther in pressGoogle Scholar
  29. 29.
    Gigo-Benato D, Geuna S, de Castro Rodrigues A, Tos P, Fornaro M, Boux E, Battiston B, Giacobini-Robecchi MG (2004) Low-power laser biostimulation enhances nerve repair after end-to-side neurorrhaphy: a double-blind randomized study in the rat median nerve model. Lasers Med Sci 19(1):57–65PubMedGoogle Scholar
  30. 30.
    Miranda EF, Vanin AA, Tomazoni SS, Grandinetti Vdos S, de Paiva PR, Machado Cdos S, Monteiro KK, Casalechi HL, de Tarso P, de Carvalho C, Leal-Junior EC (2016) Using pre-exercise photobiomodulation therapy combining super-pulsed lasers and light-emitting diodes to improve performance in progressive cardiopulmonary exercise tests. J Athl Train 51(2):129–135PubMedPubMedCentralGoogle Scholar
  31. 31.
    Miranda EF, de Oliveira LV, Antonialli FC, Vanin AA, de Carvalho PT, Leal-Junior EC (2015) Phototherapy with combination of superpulsed laser and light-emitting diodes is beneficial in improvement of muscular performance (strength and muscular endurance), dyspnea, and fatigue sensation in patients with chronic obstructive pulmonary disease. Lasers Med Sci 30(1):437–443PubMedGoogle Scholar
  32. 32.
    Antonialli FC, De Marchi T, Tomazoni SS, Vanin AA, dos Santos GV, de Paiva PR, Pinto HD, Miranda EF, de Tarso Camillo de Carvalho P, Leal-Junior EC (2014) Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers Med Sci 29(6):1967–1976PubMedGoogle Scholar
  33. 33.
    Farhat PBA, Santos FA, Gomes JC, Gomes OM (2014) Evaluation of the efficacy of LED-laser treatment and control of tooth sensitivity during in-office bleaching procedures. Photomed Laser Surg 32(7):422–426Google Scholar
  34. 34.
    Leal-Junior EC, Johnson DS, Saltmarche A, Demchak T (2014) Adjunctive use of combination of super-pulsed laser and light-emitting diodes phototherapy on nonspecific knee pain: double-blinded randomized placebo-controlled trial. Lasers Med Sci 29(6):1839–1847PubMedGoogle Scholar
  35. 35.
    Figurová M, Ledecký V, Karasová M, Hluchý M, Trbolová A, Capík I, Horňák S, Reichel P, Bjordal JM, Gál P (2016) Histological assessment of a combined low-level laser/light-emitting diode therapy (685 nm/470 nm) for sutured skin incisions in a porcine model: a short report. Photomed Laser Surg 34(2):53–55PubMedGoogle Scholar
  36. 36.
    Pagin MT, de Oliveira FA, Oliveira RC, Sant’Ana AC, de Rezende ML, Greghi SL, Damante CA (2014) Laser and light-emitting diode effects on pre-osteoblast growth and differentiation. Lasers Med Sci 29(1):55–59PubMedGoogle Scholar
  37. 37.
    Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2003) Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med Sci 18(2):95–99PubMedGoogle Scholar
  38. 38.
    de Carvalho ME, de Carvalho RM Jr, Marques AP, de Carvalho Lucio LM, de Oliveira AC, Neto OP, Villaverde AB, de Lima CJ (2016) Low intensity laser and LED therapies associated with lateral decubitus position and flexion exercises of the lower limbs in patients with lumbar disk herniation: clinical randomized trial. Lasers Med Sci 31(7):1455–1463PubMedGoogle Scholar
  39. 39.
    Chow R, Armati P, Laakso EL, Bjordal JM, Baxter GD (2011) Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: a systematic review. Photomed Laser Surg 29(6):365–381PubMedGoogle Scholar
  40. 40.
    Naderi MS, Razzaghi M, Esmaeeli Djavid G, Hajebrahimi Z (2017) A comparative study of 660 nm low-level laser and light emitted diode in proliferative effects of fibroblast cells. J Lasers Med Sci 8(Suppl 1):S46–S50PubMedPubMedCentralGoogle Scholar
  41. 41.
    Chaves ME, Araújo AR, Piancastelli AC, Pinotti M (2014) Effects of low-power light therapy on wound healing: LASER x LED. An Bras Dermatol 89(4):616–623PubMedPubMedCentralGoogle Scholar
  42. 42.
    Karu T (1985) Biostimulation of HeLa cells by low-intensity visible light: IY. – dichromatic irradiation. II Nuovo cimento D. 5(6):483Google Scholar
  43. 43.
    Tiphlova O, Karu T (1991) Action of low-intensity laser radiation on Escherichia coli division rate. Crit Rev Biomed Eng 18(6):387–412PubMedGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara GomesUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Centro de Ciências da Saúde, Centro Universitário Serra dos ÓrgãosRio de JaneiroBrazil

Personalised recommendations