Lasers in Medical Science

, Volume 34, Issue 8, pp 1665–1670 | Cite as

Dual-wavelength erbium-doped fluoride fiber laser

  • Hongxin Liu
  • Yongliang LiEmail author
  • Aofei Mao
  • Chao Yang
  • Weiwei Hu
  • Xiaokun Gu
  • Yipeng Zhang
Original Article


The laser source with 3 μm/2 μm output wavelength has many application prospects in clinical medicine, photoelectric countermeasure, and scientific research measurement. An Er3+ doped ZBLAN fiber laser with output wavelength of 2 .8 μm and 1 .6 μm is experimentally studied. By setting the pump power to 5 W, a continuous dual-wavelength output with a central wavelength of 2.803 μm and 1.61 μm is obtained and the corresponding maximum output power is 362.4 mW and 108.6 mW. The slope efficiency is 12.1% and 4.94% respectively. What’s more, the slope efficiency is 12.1% and 4.94% respectively, and the fluctuation rates of peak power of the two wavelengths are 9.7% and 2.1% within 4 h which indicate that the laser has relatively good stability.


Fiber laser Er-doped fluoride Cascaded mode 2.8 μm/1.6 μm 


Funding information

This work has been supported by the National Natural Science Foundation of China (Grant No.61675035. It provides basic theoretical research and copyright fees) and People’s Government of Jilin Province (Grant No. 20160204012GX. It provides device processing and testing costs).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethics approval was not needed.


  1. 1.
    Chen W, Han Z, Shi H et al (2017) Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8μm. Opt Express 25(8):8816CrossRefGoogle Scholar
  2. 2.
    Tang P, Wu M, Wang Q et al (2016) 2.8μm pulsed Er3+:ZBLAN fiber laser modulated by topological insulator. IEEE Photon Technol Lett 28(14):1573–1576CrossRefGoogle Scholar
  3. 3.
    Arora H, Falto-Aizpurua L, Chacon A et al (2015) Lasers for nevi: a review. Lasers Med Sci 30(7):1991–2001CrossRefPubMedGoogle Scholar
  4. 4.
    Al-Karadaghi TS, Franzen R, Jawad HA et al (2015) Investigations of radicular dentin permeability and ultrastructural changes after irradiation with Er,Cr:YSGG laser and dual wavelength (2780 and 940 nm) laser. Lasers Med Sci 30(8):2115–2121CrossRefPubMedGoogle Scholar
  5. 5.
    Khamis MA, Ennser K (2017) Enhancement on the generation of amplified spontaneous emission in thulium-doped silica fiber at 2μm. Opt Commun 403:127–132CrossRefGoogle Scholar
  6. 6.
    Jobin F, Maes F, Bernier M et al (2017) Diode-pumped mid-infrared fiber laser with 50% slope efficiency. Optica 4(2):235CrossRefGoogle Scholar
  7. 7.
    Sergei A, Darren DH, Alexander F et al (2016) High-power mid-infrared femtosecond fiber laser in the water vapor transmission window. Optica 3:1373CrossRefGoogle Scholar
  8. 8.
    Bayly JG, Kartha VB, Stevens WH (1963) The absorption spectra of liquid phase H2O, HDO and D2O from 0.7μm to 10μm. Infrared Physics 3(4):211~222CrossRefGoogle Scholar
  9. 9.
    Wei C, Zhu X, Norwood RA et al (2012) Passively Q-switched 2.8-mum nanosecond fiber laser. IEEE Photon Technol Lett 24(19):1741–1744CrossRefGoogle Scholar
  10. 10.
    Hu T, Hudson DD, Jackson SD (2012) Actively Q-switched 2.9μm Ho3+/Pr3+-doped fluoride fiber laser. Opt Lett 37(11):2145~2147Google Scholar
  11. 11.
    Tokita S, Murakami M, Shimizu S, et al. 12W Q-switched Er:ZBLAN fiber laser at 2.8μm. Opt Lett, 2011, 36(15): 2812~2814Google Scholar
  12. 12.
    Maes F, Fortin V, Bernier M et al (2017) 5.6W monolithic fiber laser at 3.55μm. Opt Lett 42(11):2054CrossRefPubMedGoogle Scholar
  13. 13.
    Ongstad AP, Kaspi R, Dente GC et al (2007) Midinfrared, optically pumped, unstable resonator lasers. Appl Phys Lett 90(19):191107CrossRefGoogle Scholar
  14. 14.
    Ongstad AP, Dente GC, Tilton ML et al (2010) High brightness from unstable resonator mid-IR semiconductor lasers. J Appl Phys 107(12):123113CrossRefGoogle Scholar
  15. 15.
    Yang C, Paxton AH, Newell TC et al (2017) On-chip unstable resonator cavity GaSb-based quantum well lasers. J Appl Phys 121(14):3146Google Scholar
  16. 16.
    Chang J, Mao Q, Feng S et al (2010) Widely tunable mid-IR difference-frequency generation based on fiber lasers. Opt Lett 35(20):3486–3488CrossRefPubMedGoogle Scholar
  17. 17.
    Sobon G, Krzempek K, Abramski KM (2013) DFG-based mid-IR generation using a compact dual-wavelength all-fiber amplifier for laser spectroscopy applications. Opt Express 21(17):20023–20031CrossRefPubMedGoogle Scholar
  18. 18.
    Arbabzadah E, Chard S, Amrania H et al (2011) Comparison of a diode pumped Er:YSGG and Er:YAG laser in the bounce geometry at the 3μm transition. Opt Express 19(27):25860–25865CrossRefPubMedGoogle Scholar
  19. 19.
    Martyshkin DV, Moskalev IS, Mirov MS et al (2011) Progress in mid-IR Cr2+ and Fe2+ doped II-VI materials and lasers. Opt Mater Express 1(5):898~910Google Scholar
  20. 20.
    Fried NM, Yang Y, Chaney CA et al (2004) Transmission of Q-switched erbium:YSGG (λ=2.79μm) and erbium:YAG (λ=2.94μm) laser radiation through germanium oxide and sapphire optical fibres at high pulse energies. Lasers Med Sci 19(3):155–160CrossRefPubMedGoogle Scholar
  21. 21.
    Luo Z, Liu C, Huang Y et al (2014) Topological-insulator passively Q-switched double-clad fiber laser at 2μm wavelength. IEEE J Quantum Electron 20(5):1–8Google Scholar
  22. 22.
    Liu J, Xu J, Wang P (2012) Graphene-based passively Q-switched 2μm thulium-doped fiber laser. Opt Commun 285(24):5319–5322CrossRefGoogle Scholar
  23. 23.
    Zhu G, Zhu X, Balakrishnan K et al (2013) Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3μm. Opt Mater Express 3(9):1365–1377CrossRefGoogle Scholar
  24. 24.
    Hendersonsapir O, Munch J, Ottaway DJ (2014) Mid-infrared fiber lasers at and beyond 3.5μm using dual-wavelength pumping. Opt Lett 39(3):493~495Google Scholar
  25. 25.
    Zhang J, Wang N, Guo Y et al (2018) Tm3+-doped lead silicate glass sensitized by Er3+ for efficient ~2μm mid-infrared laser material. SPECTROCHIM ACTA A 199:65–70CrossRefGoogle Scholar
  26. 26.
    Pratisto H, Frenz M, Ith M et al (1996) Combination of fiber-guided pulsed erbium and holmium laser radiation for tissue ablation under water. Appl Opt 35(19):3328~3337CrossRefGoogle Scholar
  27. 27.
    Sumiyoshi T, Sekita H, Arai T et al (1999) High-power continuous-wave 3 and 2μm cascade Ho3+: ZBLAN fiber laser and its medical applications. IEEE J Quantum Electron 5(4):936~943Google Scholar
  28. 28.
    Li J, Hu T, Jackson SD (2012) Q-switched induced gain switching of a two-transition cascade laser. Opt Express 20(12):13123CrossRefPubMedGoogle Scholar
  29. 29.
    Tsai TY, Fang YC, Tsao HX et al (2012) Passively cascade-pulsed erbium ZBLAN all-fiber laser. Opt Express 20(12):12787–12792CrossRefPubMedGoogle Scholar
  30. 30.
    Jackson SD, Pollnau M, Li J (2011) Diode pumped erbium cascade fiber lasers. IEEE J Quantum Electron 47(4):471–478CrossRefGoogle Scholar
  31. 31.
    Razeghi M, Bandyopadhyay N, Bai Y et al (2013) Recent advances in mid infrared (3-5μm) quantum cascade lasers. Opt Mater Express 3(11):1872–1884CrossRefGoogle Scholar
  32. 32.
    Li J, Hudson DD, Jackson SD (2011) High-power diode-pumped fiber laser operating at 3μm. Opt Lett 36(18):3642–3644CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.The School of Opto-electronics EngineeringChangchun University of Science and TechnologyChangchunChina
  2. 2.Department of Electrical and Computer EngineeringUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations