Advertisement

Lasers in Medical Science

, Volume 34, Issue 7, pp 1493–1501 | Cite as

Influence of grape seed extract in adhesion on dentin surfaces conditioned with Er,Cr:YSGG laser

  • Ana C. SilvaEmail author
  • Paulo Melo
  • João Ferreira
  • Sofia Oliveira
  • Norbert Gutknecht
Original Article
  • 102 Downloads

Abstract

The proanthocyanidin (PA)-rich grape seed extract (GSE) is a collagen cross-linking agent that can perform a chemical bond with the dentin’s collagen. The objective of this study was to evaluate the influence on shear bond strength (SBS) of the pre-conditioning of GSE, on human dentin surfaces conditioned with Er,Cr:YSGG laser. The sample consisted of 64 non-carious human teeth, divided into eight groups, four groups conditioned with Er,Cr:YSGG laser (4.5 W, 50 Hz, 50 μs, 70% air, 90% water) and four prepared with conventional methods (control). In both groups, a GSE solution was applied before using the two adhesives tested: Clearfil SE Bond (CSE) and Scotchbond Universal (SU). Subsequently, a SBS test, a scanning electron microscopy, and a statistical analysis were performed. In the laser groups, the best SBS mean (20.08 ± 4.01 MPa) was achieved in the group treated with GSE and CSE. The control group with the application of CSE showed the highest SBS mean (24.27 ± 10.28 MPa), and the group treated with laser and SU showed the lowest SBS mean (12.94 ± 6.51 MPa). Between these two groups there was a statistically significant difference (p = 0.05). However, this was not observed among the laser or control groups. The type of dentin surface preparation can influence the SBS. The CSE showed better SBS in laser and control groups. The presence of GSE did not improve the adhesion on surfaces conditioned with laser, but more studies should be carried out in the future to confirm this conclusion.

Keywords

Lasers Adhesives Matrix metalloproteinases Collagen Grape seed extract Proanthocyanidin 

Notes

Funding information

The authors declare that there was no funding.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Obeidi A, Liu P, Ramp L, Beck P, Gutknecht N (2010) Acid-etch interval and shear bond strength of Er,Cr:YSGG laser-prepared enamel and dentin. Lasers Med Sci 25(3):363–369.  https://doi.org/10.1007/s10103-009-0652-9 CrossRefGoogle Scholar
  2. 2.
    Dunn WJ, Davis JT, Bush AC (2005) Shear bond strength and SEM evaluation of composite bonded to Er:YAG laser-prepared dentin and enamel. Dent Mater 21(7):616–624.  https://doi.org/10.1016/j.dental.2004.11.003 CrossRefGoogle Scholar
  3. 3.
    Visuri S, Gilbert J, Wright D, Wigdor H, Walsh JJ (1996) Shear strength of composite bonded to Er:YAG laser-prepared dentin. J Dent Res 75(1):599–605CrossRefGoogle Scholar
  4. 4.
    Zhang S, Chen T, Ge L (2012) Scanning electron microscopy study of cavity preparation in deciduous teeth using the Er:YAG laser with different powers. Lasers Med Sci 27(1):141–144.  https://doi.org/10.1007/s10103-010-0854-1 CrossRefGoogle Scholar
  5. 5.
    De Moor R, Delmé K (2009) Laser-assisted cavity preparation and adhesion to erbium-lased tooth structure: part 1. Laser-assisted cavity preparation. J Adhes Dent 11(6):427–438.  https://doi.org/10.3290/j.jad.a18136 Google Scholar
  6. 6.
    Ceballo L, Toledano M, Osorio R, Tay F, Marshall G (2002) Bonding to Er-YAG-laser-treated dentin. J Dent Res 81(2):119–122CrossRefGoogle Scholar
  7. 7.
    Guven Y, Aktoren O (2013) Shear bond strength and ultrastructural interface analysis of different adhesive systems to Er:YAG laser-prepared dentin. Lasers Med Sci.  https://doi.org/10.1007/s10103-013-1424-0
  8. 8.
    Van Meerbeek B, De Munck J, Mattar D, Van Landuyt K, Lambrechts P (2003) Microtensile bond strengths of an etch&rinse and self-etch adhesive to enamel and dentin as a function of surface treatment. Oper Dent 28(5):647–660Google Scholar
  9. 9.
    Aranha AC, De Paula Eduardo C, Gutknecht N, Marques MM, Ramalho KM, Apel C (2007) Analysis of the interfacial micromorphology of adhesive systems in cavities prepared with Er,Cr:YSGG, Er:YAG laser and bur. Microsc Res Tech 70(8):745–751.  https://doi.org/10.1002/jemt.20459 CrossRefGoogle Scholar
  10. 10.
    Brinckerhoff C, Matrisian L (2002) Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 3(3):207–214CrossRefGoogle Scholar
  11. 11.
    Mazzoni A, Mannello F, Tay F, Tonti G, Papa S, Mazzotti G, Di Lenarda R, Pashley D, Breschi L (2007) Zymographic analysis and characterization of MMP-2 and -9 forms in human sound dentin. J Dent Res 86(6):792Google Scholar
  12. 12.
    Tjäderhane L, Larjava H, Sorsa T, Uitto V, Larmas M, Salo T (1998) The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. J Dent Res 77(8):1622–1629CrossRefGoogle Scholar
  13. 13.
    Sulkala M, Wahlgren J, Larmas M, Sorsa T, Teronen O, Salo T, Tjäderhane L (2001) The effects of MMP inhibitors on human salivary MMP activity and caries progression in rats. J Dent Res 80(6):1545–1549CrossRefGoogle Scholar
  14. 14.
    Mazzoni A, Pashley D, Nishitani Y, Breschi L, Mannello F, Tjaderhane L, Toledano M, Pashley E, Tay F (2006) Reactivation of inactivated endogenous proteolytic activities in phosphoric acid-etched dentine by etch-and-rinse adhesives. Biomaterials 27(25):4470–4476CrossRefGoogle Scholar
  15. 15.
    Liu Y, Tjaderhane L, Breschi L, Mazzoni A, Li N, Mao J, Pashley DH, Tay FR (2011) Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res 90(8):953–968.  https://doi.org/10.1177/0022034510391799 CrossRefGoogle Scholar
  16. 16.
    Hass V, Luque-Martinez I, Munoz MA, Reyes MF, Abuna G, Sinhoreti MA, Liu AY, Loguercio AD, Wang Y, Reis A (2016) The effect of proanthocyanidin-containing 10% phosphoric acid on bonding properties and MMP inhibition. Dent Mater 32(3):468–475.  https://doi.org/10.1016/j.dental.2015.12.007 CrossRefGoogle Scholar
  17. 17.
    Han B, Jaurequi J, Tang B, Nimni M (2003) Proanthocyanidin: a natural crosslinking reagent for stabilizing collagen matrices. J Biomed Mater Res A 65(1):118–124CrossRefGoogle Scholar
  18. 18.
    International Organization for Standardization (ISO) (1994) Guidance on testing of adhesion to tooth structure. Int Organ Stand Geneva TR 11405:1–14Google Scholar
  19. 19.
    Firat E, Gurgan S, Gutknecht N (2012) Microtensile bond strength of an etch-and-rinse adhesive to enamel and dentin after Er:YAG laser pretreatment with different pulse durations. Lasers Med Sci 27(1):15–21.  https://doi.org/10.1007/s10103-010-0830-9 CrossRefGoogle Scholar
  20. 20.
    Koyuturk AE, Ozmen B, Cortcu M, Tokay U, Tosun G, Erhan Sari M (2014) Effects of Er:YAG laser on bond strength of self-etching adhesives to caries-affected dentin. Microsc Res Tech 77(4):282–288.  https://doi.org/10.1002/jemt.22340 CrossRefGoogle Scholar
  21. 21.
    Kato C, Taira Y, Suzuki M, Shinkai K, Katoh Y (2012) Conditioning effects of cavities prepared with an Er,Cr:YSGG laser and an air-turbine. Odontology 100(2):164–171CrossRefGoogle Scholar
  22. 22.
    Lee BS, Lin PY, Chen MH, Hsieh TT, Lin CP, Lai JY, Lan WH (2007) Tensile bond strength of Er,Cr:YSGG laser-irradiated human dentin and analysis of dentin-resin interface. Dent Mater 23(5):570–578.  https://doi.org/10.1016/j.dental.2006.03.016 CrossRefGoogle Scholar
  23. 23.
    Moretto SG, Azambuja N Jr, Arana-Chavez VE, Reis AF, Giannini M, Eduardo Cde P, De Freitas PM (2011) Effects of ultramorphological changes on adhesion to lased dentin-scanning electron microscopy and transmission electron microscopy analysis. Microsc Res Tech 74(8):720–726.  https://doi.org/10.1002/jemt.20949 CrossRefGoogle Scholar
  24. 24.
    Obeidi A, McCracken MS, Liu PR, Litaker MS, Beck P, Rahemtulla F (2009) Enhancement of bonding to enamel and dentin prepared by Er,Cr:YSGG laser. Lasers Surg Med 41(6):454–462.  https://doi.org/10.1002/lsm.20790 CrossRefGoogle Scholar
  25. 25.
    Van Meerbeek B, Inokoshi S, Braem M, Lambrechts P, Vanherle G (1992) Morphological aspects of the resin-dentin interdiffusion zone with different dentin adhesive systems. J Dent Res 71(8):1530–1540.  https://doi.org/10.1177/00220345920710081301 CrossRefGoogle Scholar
  26. 26.
    Kostoryz E, Dharmala K, Ye Q, Wang Y, Huber J, Park J, Snider G, Katz J, Spencer P (2009) Enzymatic biodegradation of HEMA/bisGMA adhesives formulated with different water content. J Biomed Mater Res B Appl Biomater 88(2):394–401.  https://doi.org/10.1002/jbm.b.31095 CrossRefGoogle Scholar
  27. 27.
    Breschi L, Mazzoni A, Ruggeri A, Cadenaro M, Di Lenarda R, De Stefano Dorigo E (2008) Dental adhesion review: aging and stability of the bonded interface. Dent Mater 24(1):90–101.  https://doi.org/10.1016/j.dental.2007.02.009 CrossRefGoogle Scholar
  28. 28.
    Tay F, Pashley D (2003) Have dentin adhesives become too hydrophilic? J Can Dent Assoc 69(11):726–731Google Scholar
  29. 29.
    Pashley D, Tay F, Yiu C, Hashimoto M, Breschi L, Carvalho R, Ito S (2004) Collagen degradation by host-derived enzymes during aging. J Dent Res 83(3):216–221CrossRefGoogle Scholar
  30. 30.
    Lehmann N, Debret R, Roméas A, Magloire H, Degrange M, Bleicher F, Sommer P, Seux D (2009) Self-etching increases matrix metalloproteinase expression in the dentin-pulp complex. J Dent Res 88(1):77–82.  https://doi.org/10.1177/0022034508327925 CrossRefGoogle Scholar
  31. 31.
    Sano H (2006) Microtensile testing, nanoleakage, and biodegradation of resin-dentin bonds. J Dent Res 85(1):11–14CrossRefGoogle Scholar
  32. 32.
    Ferreira D, Slade D (2002) Oligomeric proanthocyanidins: naturally occurring O-heterocycles. Nat Prod Rep 19(5):517–541CrossRefGoogle Scholar
  33. 33.
    Sung H, Chang W, Ma C, Lee M (2003) Crosslinking of biological tissues using genipin and/or carbodiimide. J Biomed Mater Res A 64(3):427–438CrossRefGoogle Scholar
  34. 34.
    Vargas M, Cobb D, Denehy G (1997) Interfacial micromorphology and shear bond strength of single-bottle primer/adhesives. Dent Mater 13(5):316–324CrossRefGoogle Scholar
  35. 35.
    Nakabayashi N, Saimi Y (1996) Bonding to intact dentin. J Dent Res 75(9):1706–1715CrossRefGoogle Scholar
  36. 36.
    Al-Ammar A, Drummond J, Bedran-Russo A (2009) The use of collagen cross-linking agents to enhance dentin bond strength. J Biomed Mater Res B Appl Biomater 91:419–424.  https://doi.org/10.1002/jbm.b.31417 CrossRefGoogle Scholar
  37. 37.
    Bedran-Russo AK, Pashley DH, Agee K, Drummond JL, Miescke KJ (2008) Changes in stiffness of demineralized dentin following application of collagen crosslinkers. J Biomed Mater Res B Appl Biomater 86(2):330–334.  https://doi.org/10.1002/jbm.b.31022 CrossRefGoogle Scholar
  38. 38.
    Bedran-Russo AK, Pereira PN, Duarte WR, Drummond JL, Yamauchi M (2007) Application of Crosslinkers to Dentin Collagen Enhances the Ultimate Tensile Strength. J Biomed Mater Res B Appl Biomater 80B:268–272.  https://doi.org/10.1002/jbm.b.3059310.1002/jbmb
  39. 39.
    Rosa AD, Sarma AV, Le CQ, Jones RS, Fried D (2004) Peripheral thermal and mechanical damage to dentin with microsecond and sub-microsecond 9.6 microm, 2.79 microm, and 0.355 microm laser pulses. Lasers Surg Med 35(3):214–228CrossRefGoogle Scholar
  40. 40.
    Tsujimoto A, Barkmeier WW, Takamizawa T, Watanabe H, Johnson WW, Latta MA, Miyazaki M (2017) Comparison between universal adhesives and two-step self-etch adhesives in terms of dentin bond fatigue durability in self-etch mode. Eur J Oral Sci 125(3):215–222.  https://doi.org/10.1111/eos.12346 CrossRefGoogle Scholar
  41. 41.
    Suyama Y, Lührs A, De Munck J, Mine A, Poitevin A, Yamada T, Van Meerbeek B, Cardoso M (2013) Potential smear layer interference with bonding of self-etching adhesives to dentin. J Adhes Dent 15(4):317–324.  https://doi.org/10.3290/j.jad.a29554 Google Scholar
  42. 42.
    Miyazaki M, Tsujimoto A, Tsubota K, Takamizawa T, Kurokawa H, Platt JA (2014) Important compositional characteristics in the clinical use of adhesive systems. J Oral Sci 56(1):1–9.  https://doi.org/10.2334/josnusd.56.1 CrossRefGoogle Scholar
  43. 43.
    Thanatvarakorn O, Prasansuttiporn T, Takahashi M, Thittaweerat S, Foxton R, Ichinose S, Tagami J, Nakajima M (2016) Effect of scrubbing technique with mild self-etching adhesives on dentin bond strengths and Nanoleakage expression. J Adhes Dent 18(3):197–204.  https://doi.org/10.3290/j.jad.a36033 Google Scholar
  44. 44.
    Silva A, Melo P, Ferreira J, Oliveira T, Gutknecht N (2016) Evaluation of a self-adhesive composite in dentin surfaces - preparation with Er,Cr:YSGG laser. Int Mag Laser Dent 1:12–16Google Scholar
  45. 45.
    Takada M, Shinkai K, Kato C, Suzuki M (2015) Bond strength of composite resin to enamel and dentin prepared with Er,Cr:YSGG laser. Dent Mater J 34(6):863–871.  https://doi.org/10.4012/dmj.2015-053 CrossRefGoogle Scholar
  46. 46.
    Yang B, Adelung R, Ludwig K, Bossmann K, Pashley DH, Kern M (2005) Effect of structural change of collagen fibrils on the durability of dentin bonding. Biomaterials 26(24):5021–5031.  https://doi.org/10.1016/j.biomaterials.2005.01.024 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Operative DentistryFaculdade de Medicina Dentária da Universidade do PortoPortoPortugal
  2. 2.Department of Dental BiomaterialsFaculdade de Medicina Dentária da Universidade de LisboaLisbonPortugal
  3. 3.Department of Operative DentistryUniversity Hospital RWTH AachenAachenGermany

Personalised recommendations