Advertisement

Low-power laser alters mRNA levels from DNA repair genes in acute lung injury induced by sepsis in Wistar rats

  • Luiz Philippe da Silva Sergio
  • Andrezza Maria Côrtes Thomé
  • Larissa Alexsandra da Silva Neto Trajano
  • Solange Campos Vicentini
  • Adilson Fonseca Teixeira
  • Andre Luiz Mencalha
  • Flavia de Paoli
  • Adenilson de Souza da Fonseca
Original Article

Abstract

Acute lung injury (ALI) is defined as respiratory failure syndrome, in which the pathogenesis could occur from sepsis making it a life-threatening disease by uncontrolled hyperinflammatory responses. A possible treatment for ALI is the use of low-power infrared lasers (LPIL), whose therapeutical effects depend on wavelength, power, fluence, and emission mode. The evaluation mRNA levels of repair gene related to oxidative damage after exposure to LPIL could provide important information about the modulation of genes as treatment for ALI. Thus, the aim of this study was to evaluate the mRNA levels from OGG1, APEX1, ERCC2, and ERCC1 genes in lung tissue from Wistar rats affected by ALI and after exposure to LPIL (808 nm; 100 mW). Adult male Wistar rats (n = 30) were randomized into six groups (n = 5, for each group): control, 10 J/cm2 (2 J), 20 J/cm2 (5 J), ALI, ALI + LPIL 10 J/cm2 and ALI + LPIL 20 J/cm2. ALI was induced by intraperitoneal E. coli lipopolysaccharide injection (10 mg/kg). Lungs were removed, and samples were withdrawn for total RNA extraction, cDNA synthesis, and mRNA levels were evaluated by RT-qPCR. Data normality was verified by Kolmogorov-Smirnov, comparisons among groups were by Student’s t test, Mann-Whitney test, one-way ANOVA, Kruskal-Wallis followed by post-tests. Data showed that OGG1 (0.39 ± 0.10), ERCC2 (0.67 ± 0.24), and ERCC1 (0.60 ± 0.19) mRNA levels are reduced in ALI group when compared with the control group (1.00 ± 0.07, 1.03 ± 0.25, 1.01 ± 0.16, respectively) and, after LPIL, mRNA relative levels from DNA repair genes are altered when compared to non-exposed ALI group. Our research shows that ALI alter mRNA levels from genes related to base and nucleotide excision repair genes, suggesting that DNA repair is part of cell response to sepsis, and that photobiomodulation could modulate the mRNA levels from these genes in lung tissue.

Keywords

Acute lung injury DNA repair Low-power laser Sepsis Wistar rats 

Notes

Funding source

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Carlos Chagas de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Experiments were conducted in accordance with the Ethics Committee in Animal Experiments of Universidade Federal de Juiz de Fora, Minas Gerais, Brazil, protocol number 012/2016.

Informed consent

Not applicable.

References

  1. 1.
    Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824CrossRefGoogle Scholar
  2. 2.
    Artigas A, Bernard GR, Carlet J, Dreyfuss D, Gattinoni L, Hudson L, Lamy M, Marini JJ, Matthay MA, Pinsky MR, Spragg R, Suter PM (1998) The American-European Consensus Conference on ARDS, part 2: ventilatory, pharmacologic, supportive therapy, study design strategies and issues related to recovery and remodeling. Am J Respir Crit Care Med 157:1332–1347CrossRefGoogle Scholar
  3. 3.
    Sun W, Wang ZP, Gui P, Xia W, Xia Z, Zhang XC, Deng QZ, Xuan W, Marie C, Wang LL, Wu QP, Wang T, Lin Y (2014) Endogenous expression pattern of resolvin D1 in a rat model of self-resolution of lipopolysaccharide-induced acute respiratory distress syndrome and inflammation. Int Immunopharmacol 23:247–253CrossRefGoogle Scholar
  4. 4.
    ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS (2012) Acute respiratory distress syndrome: the Berlin Definition. JAMA 307:2526–2533Google Scholar
  5. 5.
    Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD (2005) Incidence and outcomes of acute lung injury. N Engl J Med 353:1685–1693CrossRefGoogle Scholar
  6. 6.
    Villar J, Blanco J, Añón JM, Santos-Bouza A, Blanch L, Ambrós A, Gandía F, Carriedo D, Mosteiro F, Basaldúa S, Fernández RL, Kacmarek RM, Network ALIEN (2011) The ALIEN study: incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation. Intensive Care Med 37:1932–1941CrossRefGoogle Scholar
  7. 7.
    Rubenfeld GD, Herridge MS (2007) Epidemiology and outcomes of acute lung injury. Chest 131:554–562CrossRefGoogle Scholar
  8. 8.
    Herridge MS, Cheung AM, Tansey CM, Matte-Martyn A, Diaz-Granados N, Al-Saidi F, Cooper AB, Guest CB, Mazer CD, Mehta S, Stewart TE, Barr A, Cook D, Slutsky AS, Canadian Critical Care Trials Group (2003) One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med 348:683–693CrossRefGoogle Scholar
  9. 9.
    Rocco PR, Zin WA (2005) Pulmonary and extrapulmonary acute respiratory distress syndrome: are they different? Curr Opin Crit Care 11:10–17CrossRefGoogle Scholar
  10. 10.
    Ragaller M, Richter T (2010) Acute lung injury and acute respiratory distress syndrome. J Emerg Trauma Shock 3:43–51CrossRefGoogle Scholar
  11. 11.
    Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349CrossRefGoogle Scholar
  12. 12.
    Wheeler AP, Bernard GR (2007) Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet 369:1553–1564CrossRefGoogle Scholar
  13. 13.
    Raetz CR, Ulevitch RJ, Wright SD, Sibley CH, Ding A, Nathan CF (1991) Gram-negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. FASEB J 5:2652–2660CrossRefGoogle Scholar
  14. 14.
    Laflamme N, Rivest S (2001) Toll-like receptor 4: the missing link of cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 15:155–163CrossRefGoogle Scholar
  15. 15.
    Victor VM, Esplugues JV, Hernández-Mirajes A, Rocha M (2009) Oxidative stress and mitochondrial dysfunction in sepsis: a potential therapy with mitochondria-targeted antioxidants. Infect Disord Drug Targets 9:376–389CrossRefGoogle Scholar
  16. 16.
    Alonso de Vega JM, Díaz J, Serrano E, Carbonell LF (2002) Oxidative stress in critically ill patients with systemic inflammatory response syndrome. Crit Care Med 30:1782–1786CrossRefGoogle Scholar
  17. 17.
    Sarkele M, Sabelnikovs O, Vanags I, Ozolina A, Skesters A, Silova A (2013) The role of oxidative stress markers in acute respiratory distress syndrome. Acta Chir Latvien 13:22–26CrossRefGoogle Scholar
  18. 18.
    Sarkele M, Ozolina A, Sabelnikovs O, Skesters A, Silova A, Vanags I (2014) The activity of oxidative stress markers in acute respiratory distress syndrome. Proc Latv Acad Sci 68:247–249Google Scholar
  19. 19.
    Oliveira MC Jr, Greiffo FR, Rigonato-Oliveira NC, Custódio RW, Silva VR, Damaceno-Rodrigues NR, Almeida FM, Albertini R, Lopes-Martins RÁ, de Oliveira LV, de Carvalho PT, Ligeiro de Oliveira AP, Leal EC Jr, Vieira RP (2014) Low level laser therapy reduces acute lung inflammation in a model of pulmonary and extrapulmonary LPS-induced ARDS. J Photochem Photobiol B 134:57–63CrossRefGoogle Scholar
  20. 20.
    Miranda da Silva C, Peres Leal M, Brochetti RA, Braga T, Vitoretti LB, Saraiva Câmara NO, Damazo AS, Ligeiro-de-Oliveira AP, Chavantes MC, Lino-Dos-Santos-Franco A (2015) Low level laser therapy reduces the development of lung inflammation induced by formaldehyde exposure. PLoS One 10:e0142816CrossRefGoogle Scholar
  21. 21.
    Karu TI (2003) Low-power laser therapy. In: Vo-Dinh T (ed) Biomedical photonics handbook. CRC Press, Boca RatonGoogle Scholar
  22. 22.
    O’Shea DC, Callen WR, Rhodes WT (1978) An introduction to lasers and their applications. Addison-Wesley Publishing Company, Menlo ParkGoogle Scholar
  23. 23.
    Karu T (2000) Mechanisms of low-power laser light action on cellular level. In: Simunovic Z (ed) Lasers in medicine and dentistry. Vitgraf, RijekaGoogle Scholar
  24. 24.
    Henderson TA, Morries LD (2015) Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat 11:2191–2208CrossRefGoogle Scholar
  25. 25.
    Hudson DE, Hudson DO, Wininger JM, Richardson BD (2013) Penetration of laser light at 808 and 980 nm in bovine tissue samples. Photomed Laser Surg 4:163–168CrossRefGoogle Scholar
  26. 26.
    Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L, Smith K, Heckert R, Gerst H, Anders JJ (2005) Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 36:171–185CrossRefGoogle Scholar
  27. 27.
    Joensen J, Ovsthus K, Reed RK, Hummelsund S, Iversen VV, Lopes-Martins RÁ, Bjordal JM (2012) Skin penetration time-profiles for continuous 810 nm and superpulsed 904 nm lasers in a rat model. Photomed Laser Surg 30:688–694CrossRefGoogle Scholar
  28. 28.
    Giacomo P, Orlando S, Dell’Ariccia M, Brandimarte B (2013) Low level laser therapy: laser radiation absorption in biological tissues. Appl Phys A Mater Sci Process 112:71–75CrossRefGoogle Scholar
  29. 29.
    Shingyochi Y, Kanazawa S, Tajima S, Tanaka R, Mizuno H, Tobita M (2017) A low-level carbon dioxide laser promotes fibroblast proliferation and migration through activation of Akt, ERK, and JNK. PLoS One 12:e0168937CrossRefGoogle Scholar
  30. 30.
    Migliario M, Pittarella P, Fanuli M, Rizzi M, Renò F (2014) Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med Sci 29:1463–1467CrossRefGoogle Scholar
  31. 31.
    Fonseca AS, Moreira TO, Paixão DL, Farias FM, Guimarães OR, de Paoli S, Geller M, de Paoli F (2010) Effect of laser therapy on DNA damage. Lasers Surg Med 42:481–488CrossRefGoogle Scholar
  32. 32.
    de Souza da Fonseca A, Mencalha AL, Araújo de Campos VM, Ferreira Machado SC, de Freitas Peregrino AA, Geller M, de Paoli F (2013) DNA repair gene expression in biological tissues exposed to low-intensity infrared laser. Laser Med Sci 28:1077–1084CrossRefGoogle Scholar
  33. 33.
    Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S (2013) Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Public Health 10:3886–3907CrossRefGoogle Scholar
  34. 34.
    Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberg T (2006) DNA repair and mutagenesis. ASM Press, WashingtonGoogle Scholar
  35. 35.
    Fromme JC, Banerjee A, Verdine GL (2004) DNA glycosylase recognition and catalysis. Curr Opin Struct Biol 14:43–49CrossRefGoogle Scholar
  36. 36.
    Dykheeva NS, Lebedeva NA, Lavrik OI (2016) AP endonuclease 1 as a key enzyme in repair of apurinic/apyrimidinic sites. Biochem Mosc 81:951–967CrossRefGoogle Scholar
  37. 37.
    Kim YJ, Wilson DM 3rd (2012) Overview of base excision repair biochemistry. Curr Mol Pharmacol 5:3–13CrossRefGoogle Scholar
  38. 38.
    Barzilai A, Yamamoto K (2004) DNA damage responses to oxidative stress. DNA Repair (Amst) 3:1109–1115CrossRefGoogle Scholar
  39. 39.
    Petruseva IO, Evdokimov AN, Lavrik OI (2014) Molecular mechanism of global genome nucleotide excision repair. Acta Nat 6:23–34Google Scholar
  40. 40.
    Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2005) DNA repair and mutagenesis. ASM Press, WashingtonGoogle Scholar
  41. 41.
    Vermeulen W, Fousteri M (2013) Mammalian transcription-coupled excision repair. Cold Spring Harb Perspect Biol 5:a012625CrossRefGoogle Scholar
  42. 42.
    Puumalainen MR, Rüthemann P, Min JH, Naegeli H (2016) Xeroderma pigmentosum group C sensor: unprecedented recognition strategy and tight spatiotemporal regulation. Cell Mol Life Sci 73:547–566CrossRefGoogle Scholar
  43. 43.
    Maillard O, Solyom S, Naegeli H (2007) An aromatic sensor with aversion to damaged strands confers versatility to DNA repair. PLoS Biol 5:e79CrossRefGoogle Scholar
  44. 44.
    Shuck SC, Short EA, Turchi JJ (2008) Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Res 18:64–72CrossRefGoogle Scholar
  45. 45.
    Seroz T, Perez C, Bergmann E, Bradsher J, Egly JM (2000) p44/SSL1, the regulatory subunit of the XPD/RAD3 helicase, plays a crucial role in the transcriptional activity of TFIIH. Biol Chem 275:33260–33266CrossRefGoogle Scholar
  46. 46.
    Benhamou S, Sarasin A (2002) ERCC2/XPD gene polymorphisms and cancer risk. Mutagenesis 17:463–469CrossRefGoogle Scholar
  47. 47.
    Manandhar M, Boulware KS, Wood RD (2015) The ERCC1 and ERCC4 (XPF) genes and gene products. Gene 569:153–161CrossRefGoogle Scholar
  48. 48.
    Bowden NA (2014) Nucleotide excision repair: why is it not used to predict response to platinum-based chemotherapy? Cancer Lett 346:163–171CrossRefGoogle Scholar
  49. 49.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408CrossRefGoogle Scholar
  50. 50.
    Butt Y, Kurdowska A, Allen TC (2016) Acute lung injury: a clinical and molecular review. Arch Pathol Lab Med 140:345–350CrossRefGoogle Scholar
  51. 51.
    Borrelli E, Roux-Lombard P, Grau GE, Girardin E, Ricou B, Dayer J, Suter PM (1996) Plasma concentrations of cytokines, their soluble receptors, and antioxidant vitamins can predict the development of multiple organ failure in patients at risk. Crit Care Med 24:392–397CrossRefGoogle Scholar
  52. 52.
    Chuang CC, Shiesh SC, Chi CH, Tu YF, Hor LI, Shieh CC, Chen MF (2006) Serum total antioxidant capacity reflects severity of illness in patients with severe sepsis. Crit Care 10:R36CrossRefGoogle Scholar
  53. 53.
    Goode HF, Cowley HC, Walker BE, Howdle PD, Webster NR (1995) Decreased antioxidant status and increased lipid peroxidation in patients with septic shock and secondary organ dysfunction. Crit Care Med 23:646–651CrossRefGoogle Scholar
  54. 54.
    Guerreiro MO, Petronilho F, Andrades M, Constantino L, Mina FG, Moreira JC, Dal-Pizzol F, Ritter C (2010) Plasma superoxide dismutase activity and mortality in septic patients [corrected]. J Trauma 69:E102–E106CrossRefGoogle Scholar
  55. 55.
    Cowley HC, Bacon PJ, Goode HF, Webster NR, Jones JG, Menon DK (1996) Plasma antioxidant potential in severe sepsis: a comparison of survivors and nonsurvivors. Crit Care Med 24:1179–1183CrossRefGoogle Scholar
  56. 56.
    Fein AM, Calalang-Coluci MG (2000) Acute lung injury and acute respiratory distress syndrome in sepsis and septic shock. Crit Care Clin 16:289–317CrossRefGoogle Scholar
  57. 57.
    Hoesel LM, Neff TA, Neff SB, Younger JG, Olle EW, Gao H, Pianko MJ, Bernacki KD, Sarma JV, Ward PA (2005) Harmful and protective roles of neutrophils in sepsis. Shock 24:40–47CrossRefGoogle Scholar
  58. 58.
    Narasaraju T, Yang E, Samy RP, Ng HH, Poh WP, Liew AA, Phoon MC, van Rooijen N, Chow VT (2011) Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol 179:199–210CrossRefGoogle Scholar
  59. 59.
    Strieter RM, Lynch JP 3rd, Basha MA, Standiford TJ, Kasahara K, Kunkel SL (1990) Host responses in mediating sepsis and adult respiratory distress syndrome. Semir Respir Infect 5:233–247Google Scholar
  60. 60.
    Czaikoski PG, Mota JM, Nascimento DC, Sônego F, Castanheira FV, Melo PH, Scortegagna GT, Silva RL, Barroso-Sousa R, Souto FO, Pazin-Filho A, Figueiredo F, Alves-Filho JC, Cunha FQ (2016) Neutrophil extracelular traps induce organ damage during experimental and clinical sepsis. PLoS One 11:e0148142CrossRefGoogle Scholar
  61. 61.
    Boiteux S, Coste F, Castaing B (2017) Repair of 8-oxo-7,8dihydroguanine in prokaryotic and eukaryotic cells: properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Free Radic Biol Med 107:179–201CrossRefGoogle Scholar
  62. 62.
    Ruchko MV, Gorodnya OM, Zuleta A, Pastukh VM, Gillespie MN (2011) The DNA glycosylase, Ogg1, defends against oxidant-induced mtDNA damage and apoptosis in pulmonary artery endothelial cells. Free Radic Biol Med 50:1107–1113CrossRefGoogle Scholar
  63. 63.
    Hashizume M, Mouner M, Chouteau JM, Gorodnya OM, Ruchko MV, Potter BJ, Wilson GL, Gillespie MN, Parker JC (2013) Mitochondrial-targeted DNA repair enzyme 8-oxoguanine DNA glycosylase 1 protects against ventilator-induced lung injury in intact mice. Am J Physiol Lung Cell Mol Physiol 304:L287–L297CrossRefGoogle Scholar
  64. 64.
    Hazra TK, Das A, Das S, Choudhury S, Kow YW, Roy R (2007) Oxidative DNA damage repair in mammalian cells: a new perspective. DNA Repair (Amst) 6:470–480CrossRefGoogle Scholar
  65. 65.
    Quoilin C, Mouithys-Mickalad A, Lécart S, Fontaine-Aupart MP, Hoebeke M (2014) Evidence of oxidative stress and mitochondrial respiratory chain dysfunction in an in vitro models of sepsis-induced kidney injury. Biochim Biophys Acta 1837:1790–1800CrossRefGoogle Scholar
  66. 66.
    Klungland A, Bjelland S (2007) Oxidative damage to purines in DNA: role of mammalian Ogg1. DNA Repair (Amst) 6:481–488CrossRefGoogle Scholar
  67. 67.
    Matute-Bello G, Frevert CW, Martin TR (2008) Animal model of acute lung injury. Am J Physiol Lung Cell Mol Physiol 295:L379–L399CrossRefGoogle Scholar
  68. 68.
    Cheng L, Spitz MR, Hong WK, Wei Q (2000) Reduced expression levels of nucleotide excision repair genes in lung cancer: a case-control analysis. Carcinogenesis 21:1527–1530CrossRefGoogle Scholar
  69. 69.
    Berndt SI, Huang WY, Fallin MD, Helzlsouer KJ, Platz EA, Weissfeld JL, Church TR, Welch R, Chanock SJ, Hayes RB (2007) Genetic variation in base excision repair genes and the prevalence of advanced colorectal adenoma. Cancer Res 67:13950–11404CrossRefGoogle Scholar
  70. 70.
    Holmes CL, Russell JA, Walley KR (2003) Genetic polymorphisms in sepsis and septic shock: role in prognosis and potential for therapy. Chest 124:1103–1115CrossRefGoogle Scholar
  71. 71.
    Delongui F, Carvalho Grion CM, Ehara Watanabe MA, Morimoto HK, Bonametti AM, Maeda Oda JM, Kallaur AP, Matsuo T, Reiche EM (2011) Association of tumor necrosis factor β genetic polymorphism and sepsis susceptibility. Exp Ther Med 2:349–356CrossRefGoogle Scholar
  72. 72.
    Zhang AQ, Pan W, Gao JW, Yue CL, Zeng L, Gu W, Jiang JX (2014) Associations between interleukin-1 gene polymorphisms and sepsis risk: a meta-analysis. BMC Med Genet 15:8CrossRefGoogle Scholar
  73. 73.
    Slupphaug G, Kavli B, Kroka HE (2003) The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res 531:231–251CrossRefGoogle Scholar
  74. 74.
    Costa RM, Chiganças V, Galhardo Rda S, Carvalho H, Menck CF (2003) The eukaryotic nucleotide excision repair pathway. Biochimie 85:1083–1099CrossRefGoogle Scholar
  75. 75.
    Mitchel JR, Hoeijmakers JH, Niedernhofer LJ (2003) Divide and conquer: nucleotide excision repair battles cancer and ageing. Curr Opin Cell Biol 15:232–240CrossRefGoogle Scholar
  76. 76.
    Sancar A, Reardon JT (2004) Nucleotide excision repair in E. coli and man. Adv Protein Chem 69:43–71CrossRefGoogle Scholar
  77. 77.
    Trajano LASN, Sergio LP, Silva CL, Carvalho L, Mencalha AL, Stumbo AC, Fonseca AS (2016) Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts. Laser Phys Lett 13:075601CrossRefGoogle Scholar
  78. 78.
    Huang YY, Chen ACH, Hamblin M (2009) Low-level laser therapy: an emerging clinical paradigm. SPIE Newsroom 9:1–3Google Scholar
  79. 79.
    Karu TI (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49:1–17CrossRefGoogle Scholar
  80. 80.
    Calabrese EJ (2001) The future of hormesis: where do we go from here? Crit Rev Toxicol 31:637–648CrossRefGoogle Scholar
  81. 81.
    Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose-Response 7:358–383CrossRefGoogle Scholar
  82. 82.
    Sergio LPS, Campos VM, Vicentini SC, Mencalha AL, de Paoli F, Fonseca AS (2016) Low-intensity red and infrared lasers affect mRNA expression of DNA nucleotide excision repair in skin and muscle tissue. Laser Med Sci 31:429–435CrossRefGoogle Scholar
  83. 83.
    Karu T (1986) Molecular mechanism of the therapeutic effect of low-intensity laser irradiation. Dokl Akad Nauk SSSR 291:1245–1249PubMedGoogle Scholar
  84. 84.
    Chung KF, Marwick JA (2010) Molecular mechanisms of oxidative stress in airways and lungs with reference to asthma and chronic obstructive pulmonary disease. Ann N Y Acad Sci 1203:85–91CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Luiz Philippe da Silva Sergio
    • 1
  • Andrezza Maria Côrtes Thomé
    • 1
  • Larissa Alexsandra da Silva Neto Trajano
    • 2
    • 3
  • Solange Campos Vicentini
    • 4
  • Adilson Fonseca Teixeira
    • 1
  • Andre Luiz Mencalha
    • 1
  • Flavia de Paoli
    • 5
  • Adenilson de Souza da Fonseca
    • 1
    • 3
  1. 1.Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara GomesUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Laboratório de Pesquisa em Células Tronco, Departamento de Histologia e Embriologia, Instituto de Biologia Roberto Alcantara GomesUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Laboratório de Biomorfologia e Patologia Experimental, Mestrado Profissional em Diagnóstico Clínico e Laboratorial em Medicina VeterináriaUniversidade Severino SombraRio de JaneiroBrazil
  4. 4.Departamento de Ciências Fisiológicas, Instituto BiomédicoUniversidade Federal do Estado do Rio de JaneiroRio de JaneiroBrazil
  5. 5.Departamento de Morfologia, Instituto de Ciências BiológicasUniversidade Federal de Juiz de ForaJuiz de ForaBrazil

Personalised recommendations