Lasers in Medical Science

, Volume 34, Issue 3, pp 537–546 | Cite as

Physicochemical, morphological, and biological analyses of Ti-15Mo alloy surface modified by laser beam irradiation

  • Luana C. Pires
  • Fernando P. S. Guastaldi
  • Andressa V. B. Nogueira
  • Nilson T. C. Oliveira
  • Antonio C. Guastaldi
  • Joni A. CirelliEmail author
Original Article


Perform a physicochemical and morphological characterization of a Ti-15Mo alloy surface modified by laser beam irradiation and to evaluate in vitro the morphological response and proliferation of osteoblastic cells seeded onto this alloy. Disks were made of two different metals, Ti-15Mo alloy and cpTi, used as control. A total of four groups were evaluated: polished cpTi (cpTi-pol), laser-irradiated cpTi (cpTi-L), polished Ti-15Mo alloy (Ti-15Mo-pol), and laser-irradiated Ti-15Mo alloy (Ti-15Mo-L). Before and after laser irradiation of the surfaces, physicochemical and morphological analyses were performed: scanning electron microscopy (FEG-SEM), energy-dispersive spectroscopy (EDX), and X-ray diffraction (XRD). The wettability of the samples was evaluated by contact angle measurement. Murine preosteoblastic cells MC3T3-E1 were cultured onto the experimental disks for cell proliferation, morphology, and spreading analyses. Laser groups presented irregular-shaped cavities on its surface and a typical microstructured surface with large depressions (FEG-SEM). The contact angle for both laser groups was 0°, whereas for the polished groups was ≈ 77 and ≈ 78 for cpTi-pol and Ti-15Mo-pol, respectively. Cell proliferation analysis demonstrated a higher metabolic activity in the laser groups (p < 0.05). From the fluorescence microscopy, Ti-15Mo-L surface seems to induce greater cellular differentiation compared to the cpTi-L surface. The preliminary biological in vitro analyses suggested possible advantages of laser surface treatment in the Ti-15Mo alloy regarding cell proliferation and maturation.


Dental implants Surface modification Titanium alloys Cell culture SEM 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not required.

Informed consent

Not required.


  1. 1.
    Insua A, Monje A, Wang HL, Miron RJ (2017) Basis of bone metabolism around dental implants during osseointegration and peri-implant bone loss. J Biomed Mater Res AGoogle Scholar
  2. 2.
    Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 20(Suppl 4):172–184CrossRefPubMedGoogle Scholar
  3. 3.
    Oliveira NTC, Aleixo G, Caram R, Guastaldi AC (2007) Development of Ti-Mo alloys for biomedical applications: microstructure and electrochemical characterization. Mat Sci Eng A 452-453:727–731CrossRefGoogle Scholar
  4. 4.
    Oliveira NTC, Guastaldi AC (2009) Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications. Acta Biomater 5(1):399–405CrossRefPubMedGoogle Scholar
  5. 5.
    Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8(11):3888–3903CrossRefPubMedGoogle Scholar
  6. 6.
    Rivera-Denizard O, Diffoot-Carlo N, Navas V, Sundaram PA (2008) Biocompatibility studies of human fetal osteoblast cells cultured on gamma titanium aluminide. J Mater Sci Mater Med 19(1):153–158CrossRefPubMedGoogle Scholar
  7. 7.
    Bondy SC (2014) Prolonged exposure to low levels of aluminum leads to changes associated with brain aging and neurodegeneration. Toxicology 6(315):1–7CrossRefGoogle Scholar
  8. 8.
    Kumar S, Narayanan TS (2008) Corrosion behaviour of Ti-15Mo alloy for dental implant applications. J Dent 36(7):500–507CrossRefPubMedGoogle Scholar
  9. 9.
    Oliveira NT, Guastaldi FP, Perrotti V, Hochuli-Vieira E, Guastaldi AC, Piattelli A, Iezzi G (2013) Biomedical Ti-Mo alloys with surface machined and modified by laser beam: biomechanical, histological, and histometric analysis in rabbits. Clin Implant Dent Relat Res 15(3):427–437CrossRefPubMedGoogle Scholar
  10. 10.
    Bello SA, de Jesus-Maldonado I, Rosim-Fachini E, Sundaram PA, Diffoot-Carlo N (2010) In vitro evaluation of human osteoblast adhesion to a thermally oxidized gamma-TiAl intermetallic alloy of composition Ti-48Al-2Cr-2Nb (at.%). J Mater Sci Mater Med 21(5):1739–1750CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Minagar S, Wang J, Berndt CC, Ivanova EP, Wen C (2013) Cell response of anodized nanotubes on titanium and titanium alloys. J Biomed Mater Res A 101((9):2726–2739CrossRefGoogle Scholar
  12. 12.
    Oliveira NTC, Guastaldi AC (2008) Electrochemical behavior of Ti-Mo alloys applied as biomaterial. Corrosion Sci 50(4):938–945CrossRefGoogle Scholar
  13. 13.
    Guastaldi FP, Yoo D, Marin C, Jimbo R, Tovar N, Zanetta-Barbosa D, Coelho PG (2013) Plasma treatment maintains surface energy of the implant surface and enhances osseointegration. Int J Biomater 2013:354125CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Queiroz TP, Souza FA, Guastaldi AC, Margonar R, Garcia-Júnior IR, Hochuli-Vieira E (2013) Commercially pure titanium implants with surfaces modified by laser beam with and without chemical deposition of apatite. Biomechanical and topographical analysis in rabbits. Clin Oral Implants Res 24(8):896–903CrossRefPubMedGoogle Scholar
  15. 15.
    Souza FA, Queiroz TP, Guastaldi AC, Garcia-Júnior IR, Magro-Filho O, Nishioka RS, Sisti KE, Sonoda CK (2013) Comparative in vivo study of commercially pure Ti implants with surfaces modified by laser with and without silicate deposition: biomechanical and scanning electron microscopy analysis. J Biomed Mater Res B Appl Biomater 101(1):76–84CrossRefPubMedGoogle Scholar
  16. 16.
    Meirelles L, Currie F, Jacobsson M, Albrektsson T, Wennerberg A (2008) The effect of chemical and nanotopographical modifications on the early stages of osseointegration. Int J Oral Maxillofac Implants 23(4):641–647PubMedGoogle Scholar
  17. 17.
    Wennerberg A, Albrektsson T (2010) On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants 25(1):63–74PubMedGoogle Scholar
  18. 18.
    Conserva E, Lanuti A, Menini M (2010) Cell behavior related to implant surfaces with different microstructure and chemical composition: an in vitro analysis. Int J Oral Maxillofac Implants 25(6):1099–1107PubMedGoogle Scholar
  19. 19.
    Braga FJC, Marques RFC, Almeida Filho E, Guastaldi AC (2007) Surface modification of Ti dental implants by Nd:YVO4 laser irradiation. Appl Surf Sci 253(23):9203–9208CrossRefGoogle Scholar
  20. 20.
    Bini RA, Santos ML, Filho EA, Marques RFC, Guastaldi AC (2009) Apatite coatings onto titanium surfaces submitted to laser ablation with different energy densities. Surf Coat Tech 204(4):399–403CrossRefGoogle Scholar
  21. 21.
    Filho EA, Fraga AF, Bini RA, Guastaldi AC (2011) Bioactive coating on titanium implants modified by Nd:YVO4 laser. Appl Surf Sci 257(10):4575–4580CrossRefGoogle Scholar
  22. 22.
    Tavangar A, Tan B, Venkatakrishnan K (2011) Synthesis of bio-functionalized three-dimensional titania nanofibrous structures using femtosecond laser ablation. Acta Biomater 7(6):2726–2732CrossRefPubMedGoogle Scholar
  23. 23.
    Heinrich A, Dengler K, Koerner T, Haczek C, Deppe H, Stritzker B (2008) Laser-modified titanium implants for improved cell adhesion. Lasers Med Sci 23(1):55–58CrossRefPubMedGoogle Scholar
  24. 24.
    Györgyey Á, Ungvári K, Kecskeméti G, Kopniczky J, Hopp B, Oszkó A, Pelsöczi I, Rakonczay Z, Nagy K, Turzó K (2013) Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material. Mater Sci Eng C Mater Biol Appl 33(7):4251–4259CrossRefPubMedGoogle Scholar
  25. 25.
    ASTM - American Society for Testing Materials (2008) ASTM F2066-08, standard specification for wrought titanium-15 molybdenum alloy for surgical implant applications (UNS R58150). ASTM International, West ConshohockenGoogle Scholar
  26. 26.
    Wu S, Liu X, Yeung KWK, Guo H, Li P, Hu T, Chung CY, Chu PK (2013) Surface nanoarchitectures and their effects on the mechanical properties and corrosion behavior of Ti-based orthopedic implants. Surf Coat Tech 233(25):13–26CrossRefGoogle Scholar
  27. 27.
    Sawase T, Jimbo R, Baba K, Shibata Y, Ikeda T, Atsuta M (2008) Photo-induced hydrophilicity enhances initial cell behavior and early bone apposition. Clin Oral Implants Res 19(5):491–496CrossRefPubMedGoogle Scholar
  28. 28.
    Gittens RA, Scheideler L, Rupp F, Hyzy SL, Geis-Gerstorfer J, Schwartz Z, Boyan BD (2014) A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomater 10(7):2907–2918CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wennerberg A, Jimbo R, Stübinger S, Obrecht M, Dard M, Berner S (2014) Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia. Clin Oral Implants Res 25(9):1041–1050CrossRefPubMedGoogle Scholar
  30. 30.
    Schwarz F, Wieland M, Schwartz Z, Zhao G, Rupp F, Geis-Gerstorfer J, Schedle A, Broggini N, Bornstein MM, Buser D, Ferguson SJ, Becker J, Boyan BD, Cochran DL (2009) Potential of chemically modified hydrophilic surface characteristics to support tissue integration of titanium dental implants. J Biomed Mater Res B Appl Biomater 88((2):544–557CrossRefGoogle Scholar
  31. 31.
    Rupp F, Gittens RA, Scheideler L, Marmur A, Boyan BD, Schwartz Z, Geis-Gerstorfer J (2014) A review on the wettability of dental implant surfaces I: theoretical and experimental aspects. Acta Biomater 10(7):2894–2906CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Padial-Molina M, Galindo-Moreno P, Fernández-Barbero JE, O’Valle F, Jódar-Reyes AB, Ortega-Vinuesa JL, Ramón-Torregrosa PJ (2011) Role of wettability and nanoroughness on interactions between osteoblast and modified silicon surfaces. Acta Biomater 7(2):771–778CrossRefPubMedGoogle Scholar
  33. 33.
    Park JH, Wasilewski CE, Almodovar N, Olivares-Navarrete R, Boyan BD, Tannenbaum R, Schwartz Z (2012) The responses to surface wettability gradients induced by chitosan nanofilms on microtextured titanium mediated by specific integrin receptors. Biomaterials 33(30):7386–7393CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Guo J, Padilla RJ, Ambrose W, De Kok IJ, Cooper LF (2007) The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo. Biomaterials 28(36):5418–5425CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Diagnosis and Surgery, School of Dentistry at AraraquaraSao Paulo State University-UNESPAraraquaraBrazil
  2. 2.Interfacial Electrochemistry Laboratory, Institute of Chemistry of São CarlosUSPSão CarlosBrazil
  3. 3.Department of Physical Chemistry, Institute of Chemistry of AraraquaraUNESPAraraquaraBrazil
  4. 4.Departamento de Diagnóstico e CirurgiaFaculdade de Odontologia de Araraquara – UNESPAraraquaraBrazil

Personalised recommendations