Skip to main content

Advertisement

Log in

Laser/LED phototherapy on the repair of tibial fracture treated with wire osteosynthesis evaluated by Raman spectroscopy

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of the present study was to assess, by means of Raman spectroscopy, the repair of complete surgical tibial fractures fixed with wire osteosynthesis (WO) treated or not with infrared laser (λ780 nm) or infrared light emitting diode (LED) (λ850 ± 10 nm) lights, 142.8 J/cm2 per treatment, associated or not to the use of mineral trioxide aggregate (MTA) cement. Surgical tibial fractures were created on 18 rabbits, and all fractures were fixed with WO and some groups were grafted with MTA. Irradiated groups received lights at every other day during 15 days, and all animals were sacrificed after 30 days, being the tibia removed. The results showed that only irradiation with either laser or LED influenced the peaks of phosphate hydroxyapatite (~ 960 cm−1). Collagen (~ 1450 cm−1) and carbonated hydroxyapatite (~ 1070 cm−1) peaks were influenced by both the use of MTA and the irradiation with either laser or LED. It is concluded that the use of either laser or LED phototherapy associated to MTA cement was efficacious on improving the repair of complete tibial fractures treated with wire osteosynthesis by increasing the synthesis of collagen matrix and creating a scaffold of calcium carbonate (carbonated hydroxyapatite-like) and the subsequent deposition of phosphate hydroxyapatite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pinheiro ALB, Gerbi MEMM (2006) Photoengineering of bone repair processes. Photomed Laser Surg 24:169–178

    Article  CAS  Google Scholar 

  2. Claes L, Willie B (2007) The enhancement of bone regeneration by ultrasound. Prog Biophys Mol Biol 93:384–398

    Article  Google Scholar 

  3. Pinheiro ALB, Santos NRS, Oliveira PC, Aciole GT, Ramos TA, Gonzalez TA, Silva LN, Barbosa AF, Silveira L (2013) The efficacy of the use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with miniplates: a Raman spectral study on rabbits. Lasers Med Sci 28:513–518

    Article  Google Scholar 

  4. Pinheiro ALB, Santos NRS, Oliveira PC, Aciole GT, Ramos TA, Gonzalez TA, Silva LN, Barbosa AF, Silveira L (2013) The efficacy of the use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with wire osteosynthesis: a comparative laser fluorescence and Raman spectral study on rabbits. Lasers Med Sci 28:815–822

    Article  Google Scholar 

  5. Lopes CB, Pacheco MTT, Silveira L, Cangussú MCT, Pinheiro ALB (2010) The effect of the association of near infrared laser therapy, bone morphogenetic proteins, and guided bone regeneration on tibial fractures treated with internal rigid fixation: a Raman spectroscopic study. J Biomed Mater Res 94:1257–1263

    Google Scholar 

  6. Pinheiro ALB, Lopes CB, Pacheco MTT, Brugnera A, Zanin FA, Cangussú MC, Silveira L (2010) Raman spectroscopy validation of DIAGNOdent-assisted fluorescence readings on tibial fractures treated with laser phototherapy, BMPs, guided bone regeneration, and miniplates. Photomed Laser Surg 28:S89–S97

    Article  CAS  Google Scholar 

  7. Lopes CB, Pacheco MTT, Silveira L, Duarte J, Cangussú MC, Pinheiro AL (2007) The effect of the association of NIR laser therapy BMPs, and guided bone regeneration on tibial fractures treated with wire osteosynthesis: Raman spectroscopy study. J Photochem Photobiol B 89:125–130

    Article  CAS  Google Scholar 

  8. Parirokh M, Torabinejad M (2010) Mineral trioxide aggregate: a comprehensive literature review—part I: chemical, physical, and antibacterial properties. J Endod 36:16–27

    Article  Google Scholar 

  9. Torabinejad M, Hong CU, Lee SJ, Monsef M, Pitt Ford TR (1995) Investigation of mineral trioxide aggregate for root end filling in dogs. J Endod 21:603–608

    Article  CAS  Google Scholar 

  10. Torabinejad M, Hong CU, Pitt Ford TR (1995) Physical properties of a new root end filling material. J Endod 21:349–353

    Article  CAS  Google Scholar 

  11. Torabinejad M, Hong CU, Pitt Ford TR, Kaiyawasam SP (1995) Tissue reaction to implanted super-EBA and mineral trioxide aggregate in the mandible of guinea pigs: a preliminary report. J Endod 21:569–571

    Article  CAS  Google Scholar 

  12. Torabinejad M, Chivian N (1999) Clinical applications of mineral trioxide aggregate. J Endod 25:197–205

    Article  CAS  Google Scholar 

  13. Al-Rabeah E, Perinpanayagam H, MacFarland D (2006) Human alveolar bone cells interact with ProRoot and tooth-colored MTA. J Endod 32:872–875

    Article  Google Scholar 

  14. Regan JD, Gutmann JL, Witherspoon DE (2002) Comparison of Diaket and MTA when used as rootend filling materials to support regeneration of the periradicular tissues. Int Endod J 35:840–847

    Article  CAS  Google Scholar 

  15. Moretton TR, Brown JRCE, Legan JJ, Kafrawy AH (2000) Tissue reactions after subcutaneous and intraosseous implantation of mineral trioxide aggregate and ethoxybenzoic acid cement. J Biomed Mater Res 52:528–533

    Article  CAS  Google Scholar 

  16. Bystrom A, Claesson R, Sundqvist G (1985) The antibacterial effect of camphorated paramonochlorophenol, camphorated phenoland calciumhydroxide in the treatment of infected root canals. Endod Dent Traumatol 1:170–175

    Article  CAS  Google Scholar 

  17. Mitchell PJ, Pitt Ford TR, Torabinejad M, McDonald F (1999) Osteoblast biocompatibility of mineral trioxide aggregate. Biomaterials 20:167–173

    Article  CAS  Google Scholar 

  18. Tronstad L, Andreasen JO, Hasselgren G, Kristerson L, Riis I (1980) pH changes in dental tissues after root canal filling with calcium hydroxide. J Endod 7:17–21

    Article  Google Scholar 

  19. Pinheiro ALB, Aciole GTS, Cangussú MCT, Pacheco MTT, Silveira L (2010) Effects of laser phototherapy on bone defects grafted with mineral trioxide aggregate, bone morphogenetic proteins, and guided bone regeneration: a Raman spectroscopic study. J Biomed Mater Res A 95:1041–1047

    Article  Google Scholar 

  20. Camilleri J (2007) Hydration mechanisms of mineral trioxide aggregate. Int Endod J 40:462–470

    Article  CAS  Google Scholar 

  21. Liu X, Lyon R, Meier HT, Thometz J, Haworth ST (2007) Effect of lower-level laser therapy on rabbit tibial fracture. Photomed Laser Surg 25:487–494

    Article  Google Scholar 

  22. Al-Habib M, Salman M, Faleh F, Al-Ani IM (2011) Histological observation related to the use of laser and ultrasound on bone fracture healing. IMJM 10:29–35

    Google Scholar 

  23. Kawasaki K, Shimizu N (2000) Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 26:282–291

    Article  CAS  Google Scholar 

  24. Fávaro-Pípi E, Feitosa SM, Ribeiro DA, Bossini P, Oliveira P, Parizotto NA, Renno AC (2010) Comparative study of the effects of low-intensity pulsed ultrasound and low-level laser therapy on bone defects in tibias of rats. Lasers Med Sci 25:727–732

    Article  Google Scholar 

  25. Shakouri SK, Soleimanpour J, Salekzamani Y, Oskuie MR (2010) Effect of low-level laser therapy on the fracture healing process. Lasers Med Sci 25:73–77

    Article  Google Scholar 

  26. Khadra M, Kasem N, Haan أ¦s HR, Ellingsen JE, Lyngstadaas SP (2004) Enhancement of bone formation in rat calvarial bone defects using low-level laser therapy. Oral Surg Oral Med Oral Pathol Oral Radiol 97:693–700

    Article  Google Scholar 

  27. Renno A, McDonnell P, Parizotto N, Laakso E-L (2007) The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed Laser Surg 25:275–280

    Article  CAS  Google Scholar 

  28. Stein A, Benayahu D, Maltz L, Oron U (2005) Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23:161–166

    Article  CAS  Google Scholar 

  29. Hanlon EB, Manoharan R, Koo TW, Shafer KE, Motz JT, Fitzmaurice M, Kramer JR, Itzkan I, Dasari RR, Feld MS (2000) Prospects for in vivo Raman spectroscopy. Phys Med Biol 45:R1–R59

    Article  CAS  Google Scholar 

  30. Silveira L, Silveira FL, Bodanese B, Zângaro RA, Pacheco MTT (2012) Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemicals. J Biomed Opt 17:077003

    Article  Google Scholar 

  31. Ellis DI, Cowcher DP, Ashton L, O’Hagan S, Goodacre R (2013) Illuminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic tool. Analyst 138:3871–3884

    Article  CAS  Google Scholar 

  32. Carden A, Morris MD (2000) Application of vibrational spectroscopy to the study of mineralized tissues. J Biomed Opt 5:259–268

    Article  CAS  Google Scholar 

  33. Krafft C, Popp J (2015) The many facets of Raman spectroscopy for biomedical analysis. Anal Bioanal Chem 407:699–717

    Article  CAS  Google Scholar 

  34. Movasaghi Z, Rehman S, Rehman IU (2007) Raman spectroscopy of biological tissues. Appl Spectrosc Rev 42:493–541

    Article  CAS  Google Scholar 

  35. Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 59:480–487

    Article  CAS  Google Scholar 

  36. Faibish D, Gomes A, Boivin G, Binderman I, Boskey A (2005) Infrared imaging of calcified tissue in bone biopsies from adults with osteomalacia. Bone 36:6–12

    Article  CAS  Google Scholar 

  37. Yamamoto T, Uchida K, Naruse K, Suto M, Urabe K, Uchiyama K, Suto K, Moriya M, Itoman M, Takaso M (2012) Quality assessment for processed and sterilized bone using Raman spectroscopy. Cell Tissue Bank 13:409–414

    Article  Google Scholar 

  38. Crane NJ, Polfer E, Elster EA, Potter BK, Forsberg JA (2013) Raman spectroscopic analysis of combat-related heterotopic ossification development. Bone 57:335–342

    Article  CAS  Google Scholar 

  39. Rehman I, Movasaghi Z, Rehman S (2012) Vibrational spectroscopy for tissue analysis. CRC Press, Boca Raton, pp 189–212. https://doi.org/10.1201/b12949

    Book  Google Scholar 

  40. Polomska M, Kubisz L, Kalawski R, Oszkinis G, Filipiak R, Mazurek A (2010) Fourier transform near infrared Raman spectroscopy in studies on connective tissue. Acta Phys Pol A 118:136–140

    Article  CAS  Google Scholar 

  41. Shen J, Fan L, Yang J, Shen AG, Hu JM (2010) A longitudinal Raman microspectroscopic study of osteoporosis induced by spinal cord injury. Osteoporos Int 21:81–87

    Article  CAS  Google Scholar 

  42. Mandair GS, Morris MD (2015) Contributions of Raman spectroscopy to the understanding of bone strength. Bonekey Rep 4:620. https://doi.org/10.1038/bonekey.2014.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc A 135:370–384

    Article  Google Scholar 

  44. Tlili MM, Ben Amor M, Gabrielli C, Joiret S, Maurin G, Rousseau P (2001) Characterization of CaCO3 hydrates by micro-Raman spectroscopy. J Raman Spectrosc 33:10–16

    Article  Google Scholar 

  45. Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts. Wiley, Chichester, pp 229–230

    Google Scholar 

  46. Li Y, Chen S-K, Li L, Qin L, Wang X-L, Lai Y-X (2015) Bone defect animal models for testing efficacy of bone substitute biomaterials. J Orthopaed Trans 3:95–104

    Article  Google Scholar 

  47. Torres CS, Santos JN, Monteiro JSC, Amorim PG, Pinheiro AL (2008) Does the use of laser photobiomodulation, bone morphogenetic proteins, and guided bone regeneration improve the outcome of autologous bone grafts? An in vivo study in a rodent model. Photomed Laser Surg 26:371–377

    Article  Google Scholar 

  48. Weber JBB, Pinheiro ALB, Oliveira MG, Oliveira FAM, Ramalho LMP (2006) Laser therapy improves healing of bone defects submitted to autogenous bone graft. Photomed Laser Surg 24:38–44

    Article  Google Scholar 

  49. Soares LGP, Marques AMC, Barbosa AFS, Santos NR, Aciole JMS, Souza CMC, Pinheiro ALB, Silveira L (2014) Raman study of the repair of surgical bone defects grafted with biphasic synthetic microgranular HA + β-calcium triphosphate and irradiated or not with λ780 nm laser. Lasers Med Sci 29:1539–1550

    Article  Google Scholar 

  50. Soares LG, Marques AM, Guarda MG, Aciole JM, Pinheiro AL, Santos JN (2015) Repair of surgical bone defects grafted with hydroxylapatite + β-TCP and irradiated with λ = 850 nm LED light. Braz Dent J 26:19–25

    Article  Google Scholar 

  51. Soares LG, Marques AM, Guarda MG, Aciole JM, Andrade AS, Pinheiro AL, Silveira L (2014) Raman spectroscopic study of the repair of surgical bone defects grafted or not with biphasic synthetic micro-granular HA + β-calcium triphosphate irradiated or not with λ850 nm LED light. Lasers Med Sci 29:1927–1936

    Article  Google Scholar 

  52. Pinheiro AL, Soares LG, Marques AM, Aciole JM, Souza RA, Silveira L (2014) Raman ratios on the repair of grafted surgical bone defects irradiated or not with laser (λ780 nm) or LED (λ850 nm). J Photochem Photobiol B 138:146–154

    Article  CAS  Google Scholar 

  53. de Castro IC, Rosa CB, Dos Reis Júnior JA, Moreira LG, Aragão JS, Barbosa AF, Silveira L, Pinheiro AL (2014) Assessment of the use of LED phototherapy on bone defects grafted with hydroxyapatite on rats with iron-deficiency anemia and nonanemic: a Raman spectroscopy analysis. Lasers Med Sci 29:1607–1615

    Article  Google Scholar 

  54. Aciole JM, de Castro IC, Soares LG, Barbosa AF, Aciole GT, Silveira L, Pinheiro ALB (2014) Assessment of the LED phototherapy on femoral bone defects of ovariectomized rats: a Raman spectral study. Lasers Med Sci 29:1269–1277

    PubMed  Google Scholar 

  55. Gandolfi MG, Van Landuyt K, Taddei P, Modena E, Van Meerbeek B, Prati C (2010) Environmental scanning electron microscopy connected with energy dispersive X-ray analysis and Raman techniques to study ProRoot mineral trioxide aggregate and calcium silicate cements in wet conditions and in real time. J Endod 36:851–857

    Article  Google Scholar 

  56. Danesh F, Tootian Z, Jahanbani J, Rabiee M, Fazelipour S, Taghva O, Shabaninia S (2010) Biocompatibility and mineralization activity of fresh or set white mineral trioxide aggregate, biomimetic carbonated apatite, and synthetic hydroxyapatite. J Endod 36:1036–1041

    Article  Google Scholar 

  57. Perkins HR, walker PG (1958) The occurrence of pyrophosphate in bone. J Bone Joint Surg 40B:333–339

    Article  CAS  Google Scholar 

  58. Amat A, Rigau J, Waynant RW, Ilev IK, Anders JJ (2006) The electric field induced by light can explain cellular responses to electromagnetic energy: a hypothesis of mechanism. J Photochem Photobiol B 82:152–160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L. Silveira Jr. and A. L. B. Pinheiro acknowledge the National Council for Scientific and Technological Development (CNPq) for the financial support.

Funding

This work was supported by the National Council for Scientific and Technological Development (CNPq) (Grant Nos. 470630/2012-4 and 305680/2014-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Landulfo Silveira Jr.

Ethics declarations

This research has been approved by the Animal Ethics Committee of the School of Dentistry of the Federal University of Bahia (protocol no. 17/10/2012).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinheiro, A.L.B., Soares, L.G.P., da Silva, A.C.P. et al. Laser/LED phototherapy on the repair of tibial fracture treated with wire osteosynthesis evaluated by Raman spectroscopy. Lasers Med Sci 33, 1657–1666 (2018). https://doi.org/10.1007/s10103-018-2508-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2508-7

Keywords

Navigation