Advertisement

Could a chelant improve the effect of curcumin-mediated photodynamic antimicrobial chemotherapy against dental intact biofilms?

  • Daniela Alejandra Cusicanqui Méndez
  • Veridiana Lopes Rizzato
  • Giuliana Campos Chaves Lamarque
  • Evandro José Dionisio
  • Marília Afonso Rabelo Buzalaf
  • Daniela Rios
  • Maria Aparecida Andrade Moreira Machado
  • Thiago Cruvinel
Original Article
  • 27 Downloads

Abstract

To our knowledge, there is still no evidence in relation to the combination of curcumin with chelants to improve the effects of antimicrobial photodynamic therapy (aPDT) on complex dental caries biofilms. Therefore, the aim of this study was to evaluate the antimicrobial effect of curcumin-ethylenediaminetetraacetic acid (EDTA)-mediated aPDT on the vitality of intact biofilms of dentin caries microcosms. Biofilms were grown on glass slabs in McBain medium plus 1% sucrose in microaerophily at 37 °C for 5 days. Then, biofilms were treated with associations of 600 μmol L−1 curcumin combined or not with 1% EDTA and 37.5 or 75 J cm−2 LED (455 nm). The vitality was determined by a confocal laser scanning microscopy (CLSM) after staining biofilms with a mixture of 2.5 g L−1 fluorescein diacetate and 0.25 g L−1 ethidium bromide. Statistical analysis was conducted by Kruskal-Wallis and post hoc Dunn’s test (P < 0.05). Three treatments were able to reduce the vitality of overall biofilms: curcumin + 75 J cm−2 LED, curcumin-EDTA + 37.5 J cm−2 LED, and curcumin-EDTA + 75 J cm−2 LED. Also, the vitality of inner layers of biofilms was significantly reduced only after the combination of aPDT with EDTA. Therefore, the association of curcumin and EDTA improved the antimicrobial effect of aPDT on dentin caries microcosms, considering the application of lower light densities and deeper layers of biofilms.

Keywords

Curcumin Ethylenediaminetetraacetic acid Photochemotherapy Biofilm Dental caries 

Notes

Acknowledgements

The authors thank Dr. Vanderlei Bagnato for his collaboration in the infrastructure of this research.

Role of funding source

This study was financed by São Paulo Research Foundation, with a research support (#2014/10890-0) and a master’s scholarship (#2014/22238-1).

Compliance with ethical standards

Ethical approval

This research protocol was approved by the Committee for Ethics in Human Research of the Bauru School of Dentistry (CAAE: 34559314.6.0000.5417), following ethical standards of the Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Santezi C, Reina BD, Dovigo LN (2018) Curcumin-mediated photodynamic therapy for the treatment of oral infections-a review. Photodiagn Photodyn Ther 21:409–415CrossRefGoogle Scholar
  2. 2.
    Araujo NC, Fontana CR, Bagnato VS, Gerbi ME (2012) Photodynamic effects of curcumin against cariogenic pathogens. Photomed Laser Surg 30(7):393–399CrossRefGoogle Scholar
  3. 3.
    Araujo NC, Fontana CR, Bagnato VS, Gerbi ME (2014) Photodynamic antimicrobial therapy of curcumin in biofilms and carious dentine. Lasers Med Sci 29(2):629–635CrossRefGoogle Scholar
  4. 4.
    Araujo NC, Fontana CR, Gerbi ME, Bagnato VS (2012) Overall-mouth disinfection by photodynamic therapy using curcumin. Photomed Laser Surg 30(2):96–101CrossRefGoogle Scholar
  5. 5.
    Manoil D, Filieri A, Gameiro C, Lange N, Schrenzel J, Wataha JC, Bouillaguet S (2014) Flow cytometric assessment of Streptococcus mutans viability after exposure to blue light-activated curcumin. Photodiagn Photodyn Ther 11(3):372–379CrossRefGoogle Scholar
  6. 6.
    Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry E, Dicato M, Diederich M (2005) Chemopreventive and therapeutic effects of curcumin. Cancer Lett 223(2):181–190CrossRefGoogle Scholar
  7. 7.
    Finley JW (2005) Proposed criteria for assessing the efficacy of cancer reduction by plant foods enriched in carotenoids, glucosinolates, polyphenols and selenocompounds. Ann Bot 95(7):1075–1096CrossRefGoogle Scholar
  8. 8.
    Paschoal MA, Tonon CC, Spolidorio DM, Bagnato VS, Giusti JS, Santos-Pinto L (2013) Photodynamic potential of curcumin and blue LED against Streptococcus mutans in a planktonic culture. Photodiagn Photodyn Ther 10(3):313–319CrossRefGoogle Scholar
  9. 9.
    Tonon CC, Paschoal MA, Correia M, Spolidorio D, Bagnato VS, Giusti J, Santos-Pinto L (2015) Comparative effects of photodynamic therapy mediated by curcumin on standard and clinical isolate of Streptococcus mutans. J Contemp Dent Pract 16(1):1–6CrossRefGoogle Scholar
  10. 10.
    Nong HV, Hung LX, Thang PN, Chinh VD, Vu LV, Dung PT, Trung TV, Nga PT (2016) Fabrication and vibration characterization of curcumin extracted from turmeric (Curcuma longa) rhizomes of the northern Vietnam. Springerplus 5(1):1147CrossRefGoogle Scholar
  11. 11.
    Konopka K, Goslinski T (2007) Photodynamic therapy in dentistry. J Dent Res 86(8):694–707CrossRefGoogle Scholar
  12. 12.
    Maisch T (2007) Anti-microbial photodynamic therapy: useful in the future? Lasers Med Sci 22(2):83–91CrossRefGoogle Scholar
  13. 13.
    Taraszkiewicz A, Fila G, Grinholc M, Nakonieczna J (2013) Innovative strategies to overcome biofilm resistance. Biomed Res Int 2013:150653CrossRefGoogle Scholar
  14. 14.
    Vatansever F, de Melo WC, Avci P, Vecchio D, Sadasivam M, Gupta A, Chandran R, Karimi M, Parizotto NA, Yin R, Tegos GP, Hamblin MR (2013) Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev 37(6):955–989CrossRefGoogle Scholar
  15. 15.
    Zaura-Arite E, van Marle J, ten Cate JM (2001) Conofocal microscopy study of undisturbed and chlorhexidine-treated dental biofilm. J Dent Res 80(5):1436–1440CrossRefGoogle Scholar
  16. 16.
    de Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68(9):4839–4849CrossRefGoogle Scholar
  17. 17.
    Antunes LC, Ferreira RB, Buckner MM, Finlay BB (2010) Quorum sensing in bacterial virulence. Microbiology 156(Pt 8):2271–2282CrossRefGoogle Scholar
  18. 18.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322CrossRefGoogle Scholar
  19. 19.
    Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112(10):1466–1477CrossRefGoogle Scholar
  20. 20.
    Haapasalo M, Shen Y, Wang Z, Gao Y (2014) Irrigation in endodontics. Br Dent J 216(6):299–303CrossRefGoogle Scholar
  21. 21.
    Zehnder M (2006) Root canal irrigants. J Endod 32(5):389–398CrossRefGoogle Scholar
  22. 22.
    George S, Hamblin MR, Kishen A (2009) Uptake pathways of anionic and cationic photosensitizers into bacteria. Photochem Photobiol Sci 8(6):788–795CrossRefGoogle Scholar
  23. 23.
    Wood SR, Kirkham J, Marsh PD, Shore RC, Nattress B, Robinson C (2000) Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J Dent Res 79(1):21–27CrossRefGoogle Scholar
  24. 24.
    Dige I, Nyengaard JR, Kilian M, Nyvad B (2009) Application of stereological principles for quantification of bacteria in intact dental biofilms. Oral Microbiol Immunol 24(1):69–75CrossRefGoogle Scholar
  25. 25.
    McBain AJ, Sissons C, Ledder RG, Sreenivasan PK, De Vizio W, Gilbert P (2005) Development and characterization of a simple perfused oral microcosm. J Appl Microbiol 98(3):624–634CrossRefGoogle Scholar
  26. 26.
    Rudney JD, Chen R, Lenton P, Li J, Li Y, Jones RS, Reilly C, Fok AS, Aparicio C (2012) A reproducible oral microcosm biofilm model for testing dental materials. J Appl Microbiol 113(6):1540–1553CrossRefGoogle Scholar
  27. 27.
    Filoche SK, Soma KJ, Sissons CH (2007) Caries-related plaque microcosm biofilms developed in microplates. Oral Microbiol Immunol 22(2):73–79CrossRefGoogle Scholar
  28. 28.
    Li Y-H, Tang N, Aspiras MB, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG (2002) A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 184(10):2699–2708CrossRefGoogle Scholar
  29. 29.
    Signori C, van de Sande FH, Maske TT, de Oliveira EF, Cenci MS (2016) Influence of the inoculum source on the cariogenicity of in vitro microcosm biofilms. Caries Res 50(2):97–103CrossRefGoogle Scholar
  30. 30.
    Soria-Lozano P, Gilaberte Y, Paz-Cristobal MP, Perez-Artiaga L, Lampaya-Perez V, Aporta J, Perez-Laguna V, Garcia-Luque I, Revillo MJ, Rezusta A (2015) In vitro effect photodynamic therapy with differents photosensitizers on cariogenic microorganisms. BMC Microbiol 15:187CrossRefGoogle Scholar
  31. 31.
    Andrade MC, Ribeiro AP, Dovigo LN, Brunetti IL, Giampaolo ET, Bagnato VS, Pavarina AC (2013) Effect of different pre-irradiation times on curcumin-mediated photodynamic therapy against planktonic cultures and biofilms of Candida spp. Arch Oral Biol 58(2):200–210CrossRefGoogle Scholar
  32. 32.
    Araujo NC, de Menezes RF, Carneiro VSM, Dos Santos-Neto AP, Fontana CR, Bagnato VS, Harvey CM, Gerbi MEM (2017) Photodynamic inactivation of cariogenic pathogens using curcumin as photosensitizer. Photomed Laser Surg 35(5):259–263CrossRefGoogle Scholar
  33. 33.
    Quishida CC, Mima EG, Dovigo LN, Jorge JH, Bagnato VS, Pavarina AC (2015) Photodynamic inactivation of a multispecies biofilm using photodithazine((R)) and LED light after one and three successive applications. Lasers Med Sci 30(9):2303–2312CrossRefGoogle Scholar
  34. 34.
    Silva TC, Pereira AF, Buzalaf MA, Machado MA, Crielaard W, Deng DM (2014) Diverse outcomes of photodynamic antimicrobial chemotherapy on five enterococcus faecalis strains. Photodiagn Photodyn Ther 11(3):283–289CrossRefGoogle Scholar
  35. 35.
    Arias-Moliz MT, Ferrer-Luque CM, Espigares-Garcia M, Baca P (2009) Enterococcus faecalis biofilms eradication by root canal irrigants. J Endod 35(5):711–714CrossRefGoogle Scholar
  36. 36.
    Ordinola-Zapata R, Bramante CM, Cavenago B, Graeff MS, Gomes de Moraes I, Marciano M, Duarte MA (2012) Antimicrobial effect of endodontic solutions used as final irrigants on a dentine biofilm model. Int Endod J 45(2):162–168CrossRefGoogle Scholar
  37. 37.
    Helander IM, Mattila-Sandholm T (2000) Permeability barrier of the gram-negative bacterial outer membrane with special reference to nisin. Int J Food Microbiol 60(2–3):153–161CrossRefGoogle Scholar
  38. 38.
    Vaara M (1992) Agents that increase the permeability of the outer membrane. Microbiol Rev 56(3):395–411Google Scholar
  39. 39.
    Hu J, Lin S, Tan BK, Hamzah SS, Lin Y, Kong Z, Zhang Y, Zheng B, Zeng S (2018) Photodynamic inactivation of Burkholderia cepacia by curcumin in combination with EDTA. Food Res Int 111:265–271CrossRefGoogle Scholar
  40. 40.
    Soukos NS, Mulholland SE, Socransky SS, Doukas AG (2003) Photodestruction of human dental plaque bacteria: enhancement of the photodynamic effect by photomechanical waves in an oral biofilm model. Lasers Surg Med 33(3):161–168CrossRefGoogle Scholar
  41. 41.
    Mendez DAC, Gutierrez E, Dionisio EJ, Oliveira TM, Buzalaf MAR, Rios D, Machado M, Cruvinel T (2018) Effect of methylene blue-mediated antimicrobial photodynamic therapy on dentin caries microcosms. Lasers Med Sci 33(3):479–487CrossRefGoogle Scholar
  42. 42.
    de Oliveira FS, Cruvinel T, Cusicanqui Mendez DA, Dionisio EJ, Rios D, Machado M (2018) The in vitro effect of antimicrobial photodynamic therapy on dental microcosm biofilms from partially erupted permanent molars: a pilot study. Photodiagn Photodyn Ther 21:163–167CrossRefGoogle Scholar
  43. 43.
    Méndez DAC, Gutierres E, Dionísio EJ, Buzalaf MAR, Oliveira RC, Machado MAAM, Cruvinel T (2018) Curcumin-mediated antimicrobial photodynamic therapy reduces the viability and vitality of infected dentin caries microcosms. Photodiagn Photodyn Ther 24:102–108.  https://doi.org/10.1016/j.pdpdt.2018.09.007 CrossRefGoogle Scholar
  44. 44.
    Matsumoto-Nakano M (2018) Role of Streptococcus mutans surface proteins for biofilm formation. Jpn Dent Sci Rev 54(1):22–29CrossRefGoogle Scholar
  45. 45.
    Dige I, Nilsson H, Kilian M, Nyvad B (2007) In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. Eur J Oral Sci 115(6):459–467CrossRefGoogle Scholar
  46. 46.
    Silva TC, Pereira AF, Exterkate RA, Bagnato VS, Buzalaf MA, Machado MA, Ten Cate JM, Crielaard W, Deng DM (2012) Application of an active attachment model as a high-throughput demineralization biofilm model. J Dent 40(1):41–47CrossRefGoogle Scholar
  47. 47.
    Deng DM, Hoogenkamp MA, Exterkate RA, Jiang LM, van der Sluis LW, Ten Cate JM, Crielaard W (2009) Influence of Streptococcus mutans on enterococcus faecalis biofilm formation. J Endod 35(9):1249–1252CrossRefGoogle Scholar
  48. 48.
    Exterkate RA, Crielaard W, Ten Cate JM (2010) Different response to amine fluoride by Streptococcus mutans and polymicrobial biofilms in a novel high-throughput active attachment model. Caries Res 44(4):372–379CrossRefGoogle Scholar
  49. 49.
    Wang D, Shen Y, Ma J, Hancock RE, Haapasalo M (2017) Antibiofilm effect of D-enantiomeric peptide alone and combined with EDTA in vitro. J Endod 43(11):1862–1867CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Daniela Alejandra Cusicanqui Méndez
    • 1
  • Veridiana Lopes Rizzato
    • 1
  • Giuliana Campos Chaves Lamarque
    • 1
  • Evandro José Dionisio
    • 1
  • Marília Afonso Rabelo Buzalaf
    • 2
  • Daniela Rios
    • 1
  • Maria Aparecida Andrade Moreira Machado
    • 1
  • Thiago Cruvinel
    • 1
  1. 1.Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of DentistryUniversity of São PauloBauruBrazil
  2. 2.Department of Biological Sciences, Bauru School of DentistryUniversity of São PauloBauruBrazil

Personalised recommendations