Lasers in Medical Science

, Volume 33, Issue 3, pp 609–617 | Cite as

In vivo study of dermal collagen of striae distensae by confocal Raman spectroscopy

  • Pam Wen Lung
  • Vamshi Krishna Tippavajhala
  • Thiago de Oliveira Mendes
  • Claudio A. Téllez-Soto
  • Desirée Cigaran Schuck
  • Carla Abdo Brohem
  • Marcio Lorencini
  • Airton Abrahão Martin
Original Article
  • 103 Downloads

Abstract

This research work mainly deals with studying qualitatively the changes in the dermal collagen of two forms of striae distensae (SD) namely striae rubrae (SR) and striae albae (SA) when compared to normal skin (NS) using confocal Raman spectroscopy. The methodology includes an in vivo human skin study for the comparison of confocal Raman spectra of dermis region of SR, SA, and NS by supervised multivariate analysis using partial least squares discriminant analysis (PLS-DA) to determine qualitatively the changes in dermal collagen. These groups are further analyzed for the extent of hydration of dermal collagen by studying the changes in the water content bound to it. PLS-DA score plot showed good separation of the confocal Raman spectra of dermis region into SR, SA, and NS data groups. Further analysis using loading plot and S-plot indicated the participation of various components of dermal collagen in the separation of these groups. Bound water content analysis showed that the extent of hydration of collagen is more in SD when compared to NS. Based on the results obtained, this study confirms the active involvement of dermal collagen in the formation of SD. It also emphasizes the need to study quantitatively the role of these various biochemical changes in the dermal collagen responsible for the variance between SR, SA, and NS.

Keywords

Confocal Raman spectroscopy Human dermal collagen Striae distensae In vivo human skin study 

Notes

Acknowledgements

Authors thank FVE, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (307809/2013-7) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (project number 88881.068140/2014-01) for their financial support.

Compliance with ethical standards

Ethical approval

Authors obtained prior approval from Research Ethics Committee with the protocol number 03796112.1.0000.0077 as the study design of this research work included human studies.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Al-Himdani S, Ud-Din S, Gilmore S, Bayat A (2014) Striae distensae: a comprehensive review and evidence-based evaluation of prophylaxis and treatment. Br J Dermatol 170(3):527–547.  https://doi.org/10.1111/bjd.12681 CrossRefPubMedGoogle Scholar
  2. 2.
    Troisier EMP (1889) Histologie des vergetures. Ann Gynecol 31:206Google Scholar
  3. 3.
    Sisson WR (1954) Colored striae in adolescent children. J Pediatr 45(5):520–530CrossRefPubMedGoogle Scholar
  4. 4.
    Cho S, Park ES, Lee DH, Li K, Chung JH (2006) Clinical features and risk factors for striae distensae in Korean adolescents. J Eur Acad Dermatol Venereol 20(9):1108–1113.  https://doi.org/10.1111/j.1468-3083.2006.01747.x CrossRefPubMedGoogle Scholar
  5. 5.
    Elton RF, Pinkus H (1966) Striae in normal men. Arch Dermatol 94:33–34CrossRefPubMedGoogle Scholar
  6. 6.
    Chang ALS, Agredano YZ, Kimball AB (2004) Risk factors associated with striae gravidarum. J Am Acad Dermatol 51(6):881–885.  https://doi.org/10.1016/j.jaad.2004.05.030 CrossRefPubMedGoogle Scholar
  7. 7.
    Osman H, Rubeiz N, Tamim H, Nassar AH (2007) Risk factors for the development of striae gravidarum. Am J Obstet Gynecol 196(1):62–e61-62.e65.  https://doi.org/10.1016/j.ajog.2006.08.044 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Khalil GM, Al Shobaili HA, Alzolibani A, Al Robaee A (2011) Relationship between obesity and other risk factors and skin disease among adult Saudi population. J Egypt Public Health Assoc 86(3–4):56–62.  https://doi.org/10.1097/01.EPX.0000398942.36374.5c CrossRefPubMedGoogle Scholar
  9. 9.
    Cordeiro RC, Zecchin KG, de Moraes AM (2010) Expression of estrogen, androgen, and glucocorticoid receptors in recent striae distensae. Int J Dermatol 49(1):30–32.  https://doi.org/10.1111/j.1365-4632.2008.04005.x CrossRefPubMedGoogle Scholar
  10. 10.
    Pinkus H, Keech MK, Mehregan AH (1966) Histopathology of striae distensae, with special reference to striae and wound healing in the Marfan syndrome. J Invest Dermatol 46(3):283–292CrossRefPubMedGoogle Scholar
  11. 11.
    Rogalski C, Haustein UF, Glander HJ, Paasch U (2003) Extensive striae distensae as a result of topical corticosteroid therapy in psoriasis vulgaris. Acta Derm Venereol 83(1):54–55CrossRefPubMedGoogle Scholar
  12. 12.
    Valente DS, Zanella RK, Doncatto LF, Padoin AV (2014) Incidence and risk factors of striae distensae following breast augmentation surgery: a cohort study. PLoS One 9(5):e97493.  https://doi.org/10.1371/journal.pone.0097493 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Elson M (1994) Topical tretinoin in the treatment of striae distensae and in the promotion of wound healing: a review. J Dermatol Treat 5(3):163–165.  https://doi.org/10.3109/09546639409084563 CrossRefGoogle Scholar
  14. 14.
    Kang S (1998) Topical tretinoin therapy for management of early striae. J Am Acad Dermatol 39(2 Pt 3):S90–S92CrossRefPubMedGoogle Scholar
  15. 15.
    Ud-Din S, McGeorge D, Bayat A (2016) Topical management of striae distensae (stretch marks): prevention and therapy of striae rubrae and albae. J Eur Acad Dermatol Venereol 30(2):211–222.  https://doi.org/10.1111/jdv.13223 CrossRefPubMedGoogle Scholar
  16. 16.
    Gilmore SJ, Vaughan BL Jr, Madzvamuse A, Maini PK (2012) A mechanochemical model of striae distensae. Math Biosci 240(2):141–147.  https://doi.org/10.1016/j.mbs.2012.06.007 CrossRefPubMedGoogle Scholar
  17. 17.
    Rangel O, Arias I, Garcia E, Lopez-Padilla S (2001) Topical tretinoin 0.1% for pregnancy-related abdominal striae: an open-label, multicenter, prospective study. Adv Ther 18(4):181–186CrossRefPubMedGoogle Scholar
  18. 18.
    Mallol J, Belda MA, Costa D, Noval A, Sola M (1991) Prophylaxis of Striae gravidarum with a topical formulation. A double blind trial. Int J Cosmet Sci 13(1):51–57.  https://doi.org/10.1111/j.1467-2494.1991.tb00547.x CrossRefPubMedGoogle Scholar
  19. 19.
    Ud-Din S, McAnelly SL, Bowring A, Whiteside S, Morris J, Chaudhry I, Bayat A (2013) A double-blind controlled clinical trial assessing the effect of topical gels on striae distensae (stretch marks): a non-invasive imaging, morphological and immunohistochemical study. Arch Dermatol Res 305(7):603–617.  https://doi.org/10.1007/s00403-013-1336-7 CrossRefPubMedGoogle Scholar
  20. 20.
    Buchanan K, Fletcher HM, Reid M (2010) Prevention of striae gravidarum with cocoa butter cream. Int J Gynaecol Obstet 108(1):65–68.  https://doi.org/10.1016/j.ijgo.2009.08.008 CrossRefPubMedGoogle Scholar
  21. 21.
    Taavoni S, Soltanipour F, Haghani H, Ansarian H, Kheirkhah M (2011) Effects of olive oil on striae gravidarum in the second trimester of pregnancy. Complement Ther Clin Pract 17(3):167–169.  https://doi.org/10.1016/j.ctcp.2010.10.003 CrossRefPubMedGoogle Scholar
  22. 22.
    Timur Tashan S, Kafkasli A (2012) The effect of bitter almond oil and massaging on striae gravidarum in primiparaous women. J Clin Nurs 21(11–12):1570–1576.  https://doi.org/10.1111/j.1365-2702.2012.04087.x CrossRefPubMedGoogle Scholar
  23. 23.
    Ash K, Lord J, Zukowski M, McDaniel DH (1998) Comparison of topical therapy for striae alba (20% glycolic acid/0.05% tretinoin versus 20% glycolic acid/10% L-ascorbic acid). Dermatol Surg 24(8):849–856CrossRefPubMedGoogle Scholar
  24. 24.
    Ibrahim ZA, El-Tatawy RA, El-Samongy MA, Ali DA (2015) Comparison between the efficacy and safety of platelet-rich plasma vs. microdermabrasion in the treatment of striae distensae: clinical and histopathological study. J Cosmet Dermatol 14(4):336–346.  https://doi.org/10.1111/jocd.12160 CrossRefPubMedGoogle Scholar
  25. 25.
    Tehrani R (2006) Microdermabrasion for striae distensae. Ind J Dermatol Venereol Leprol 72(1):59 author reply 59-60CrossRefGoogle Scholar
  26. 26.
    Hernandez-Perez E, Colombo-Charrier E, Valencia-Ibiett E (2002) Intense pulsed light in the treatment of striae distensae. Dermatol Surg 28(12):1124–1130PubMedGoogle Scholar
  27. 27.
    Savas JA, Ledon JA, Franca K, Nouri K (2014) Lasers and lights for the treatment of striae distensae. Lasers Med Sci 29(5):1735–1743.  https://doi.org/10.1007/s10103-013-1342-1 CrossRefPubMedGoogle Scholar
  28. 28.
    Yang YJ, Lee G-Y (2011) Treatment of striae distensae with nonablative fractional laser versus ablative CO(2) fractional laser: a randomized controlled trial. Ann Dermatol 23(4):481–489.  https://doi.org/10.5021/ad.2011.23.4.481 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    de Angelis F, Kolesnikova L, Renato F, Liguori G (2011) Fractional nonablative 1540-nm laser treatment of striae distensae in Fitzpatrick skin types II to IV: clinical and histological results. Aesthet Surg J 31(4):411–419.  https://doi.org/10.1177/1090820x11402493 CrossRefPubMedGoogle Scholar
  30. 30.
    Sheu HM, Yu HS, Chang CH (1991) Mast cell degranulation and elastolysis in the early stage of striae distensae. J Cutan Pathol 18(6):410–416CrossRefPubMedGoogle Scholar
  31. 31.
    Rolfe H, Wurm E, Gilmore S (2012) An investigation of striae distensae using reflectance confocal microscopy. Aust J Dermatol 53(3):181–185.  https://doi.org/10.1111/j.1440-0960.2012.00884.x CrossRefGoogle Scholar
  32. 32.
    Zheng P, Lavker RM, Kligman AM (1985) Anatomy of striae. Br J Dermatol 112(2):185–193CrossRefPubMedGoogle Scholar
  33. 33.
    Shuster S (1979) The cause of striae distensae. Acta Derm Venereol Suppl 59(85):161–169Google Scholar
  34. 34.
    Tsuji T, Sawabe M (1988) Elastic fibers in striae distensae. J Cutan Pathol 15(4):215–222CrossRefPubMedGoogle Scholar
  35. 35.
    Lee KS, Rho YJ, Jang SI, Suh MH, Song JY (1994) Decreased expression of collagen and fibronectin genes in striae distensae tissue. Clin Exp Dermatol 19(4):285–288CrossRefPubMedGoogle Scholar
  36. 36.
    Mitts TF, Jimenez F, Hinek A (2005) Skin biopsy analysis reveals predisposition to stretch mark formation. Aesthet Surg J 25(6):593–600CrossRefPubMedGoogle Scholar
  37. 37.
    Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958.  https://doi.org/10.1146/annurev.biochem.77.032207.120833 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ramshaw JA, Shah NK, Brodsky B (1998) Gly-X-Y tripeptide frequencies in collagen: a context for host-guest triple-helical peptides. J Struct Biol 122(1–2):86–91.  https://doi.org/10.1006/jsbi.1998.3977 CrossRefPubMedGoogle Scholar
  39. 39.
    Rygula A, Majzner K, Marzec KM, Kaczor A, Pilarczyk M, Baranska M (2013) Raman spectroscopy of proteins: a review. J Raman Spectrosc 44(8):1061–1076.  https://doi.org/10.1002/jrs.4335 CrossRefGoogle Scholar
  40. 40.
    Weiss HV, Siler VE, Buechler PR (1951) A quantitative relationship between the water content of skin and inflammation produced by chemical irritants 1. J Clin Investig 30(12):1507–1511.  https://doi.org/10.1172/JCI102561 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Virkler K, Lednev IK (2008) Raman spectroscopy offers great potential for the nondestructive confirmatory identification of body fluids. Forensic Sci Int 181(1–3):e1–e5.  https://doi.org/10.1016/j.forsciint.2008.08.004 CrossRefPubMedGoogle Scholar
  42. 42.
    Pappas D, Smith BW, Winefordner JD (2000) Raman spectroscopy in bioanalysis. Talanta 51(1):131–144CrossRefPubMedGoogle Scholar
  43. 43.
    Das RS, Agrawal YK (2011) Raman spectroscopy: recent advancements, techniques and applications. Vib Spectrosc 57(2):163–176.  https://doi.org/10.1016/j.vibspec.2011.08.003 CrossRefGoogle Scholar
  44. 44.
    Baena JR, Lendl B (2004) Raman spectroscopy in chemical bioanalysis. Curr Opin Chem Biol 8(5):534–539.  https://doi.org/10.1016/j.cbpa.2004.08.014 CrossRefPubMedGoogle Scholar
  45. 45.
    Liu R, Liu J-f, Zhou X-x, Jiang G-b, Liu R (2011) Applications of Raman-based techniques to on-site and in-vivo analysis. TrAC Trends Anal Chem 30(9):1462–1476.  https://doi.org/10.1016/j.trac.2011.06.011 CrossRefGoogle Scholar
  46. 46.
    Caspers PJ, Lucassen GW, Puppels GJ (2003) Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. Biophys J 85(1):572–580CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Chrit L, Bastien P, Biatry B, Simonnet JT, Potter A, Minondo AM, Flament F, Bazin R, Sockalingum GD, Leroy F, Manfait M, Hadjur C (2007) In vitro and in vivo confocal Raman study of human skin hydration: assessment of a new moisturizing agent, pMPC. Biopolymers 85(4):359–369.  https://doi.org/10.1002/bip.20644 CrossRefPubMedGoogle Scholar
  48. 48.
    Teixeira AP, Rangel JL, Raniero LJ, Tosato MG, Fávero PP, Martin AA (2014) Confocal Raman spectroscopy: determination of natural moisturizing factor profile related to skin hydration. Revista Brasileira de Engenharia Biomédica 30:11–16CrossRefGoogle Scholar
  49. 49.
    Nakagawa N, Matsumoto M, Sakai S (2010) In vivo measurement of the water content in the dermis by confocal Raman spectroscopy. Skin Res Technol 16(2):137–141.  https://doi.org/10.1111/j.1600-0846.2009.00410.x CrossRefPubMedGoogle Scholar
  50. 50.
    Chrit L, Hadjur C, Morel S, Sockalingum G, Lebourdon G, Leroy F, Manfait M (2005) In vivo chemical investigation of human skin using a confocal Raman fiber optic microprobe. J Biomed Opt 10(4):44007.  https://doi.org/10.1117/1.2003747 CrossRefPubMedGoogle Scholar
  51. 51.
    Chrit L, Bastien P, Sockalingum GD, Batisse D, Leroy F, Manfait M, Hadjur C (2006) An in vivo randomized study of human skin moisturization by a new confocal Raman fiber-optic microprobe: assessment of a glycerol-based hydration cream. Skin Pharmacol Physiol 19(4):207–215.  https://doi.org/10.1159/000093116 CrossRefPubMedGoogle Scholar
  52. 52.
    Oliveira Mendes T, Pinto LP, Santos L, Tippavajhala VK, Téllez Soto CA, Martin AA (2016) Statistical strategies to reveal potential vibrational markers for in vivo analysis by confocal Raman spectroscopy. BIOMEDO 21(7):075010–075010.  https://doi.org/10.1117/1.JBO.21.7.075010 Google Scholar
  53. 53.
    Movasaghi Z, Rehman S, Rehman IU (2007) Raman spectroscopy of biological tissues. Appl Spectrosc Rev 42(5):493–541.  https://doi.org/10.1080/05704920701551530 CrossRefGoogle Scholar
  54. 54.
    Cheng WT, Liu MT, Liu HN, Lin SY (2005) Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma. Microsc Res Tech 68(2):75–79.  https://doi.org/10.1002/jemt.20229 CrossRefPubMedGoogle Scholar
  55. 55.
    Frank CJ, McCreery RL, Redd DC (1995) Raman spectroscopy of normal and diseased human breast tissues. Anal Chem 67(5):777–783CrossRefPubMedGoogle Scholar
  56. 56.
    Nguyen TT, Happillon T, Feru J, Brassart-Passco S, Angiboust J-F, Manfait M, Piot O (2013) Raman comparison of skin dermis of different ages: focus on spectral markers of collagen hydration. J Raman Spectrosc 44(9):1230–1237.  https://doi.org/10.1002/jrs.4355 CrossRefGoogle Scholar
  57. 57.
    Tellez SC, Pereira L, dos Santos L, Favero P, Martin AA (2015) RM1 semi empirical and DFT: B3LYP/3-21G theoretical insights on the confocal Raman experimental observations in qualitative water content of the skin dermis of healthy young, healthy elderly and diabetic elderly women’s. Spectrochim Acta A Mol Biomol Spectrosc 149:1009–1019.  https://doi.org/10.1016/j.saa.2015.06.110 CrossRefGoogle Scholar
  58. 58.
    Fitzpatrick TB (1988) THe validity and practicality of sun-reactive skin types i through vi. Arch Dermatol 124(6):869–871.  https://doi.org/10.1001/archderm.1988.01670060015008 CrossRefPubMedGoogle Scholar
  59. 59.
    Brereton RG, Lloyd GR (2014) Partial least squares discriminant analysis: taking the magic away. J Chemom 28(4):213–225.  https://doi.org/10.1002/cem.2609 CrossRefGoogle Scholar
  60. 60.
    Worley B, Powers R (2013) Multivariate analysis in metabolomics. Curr Metabol 1(1):92–107.  https://doi.org/10.2174/2213235X11301010092 Google Scholar
  61. 61.
    Gibson T (1969) Physical properties of skin. J Anat 105(Pt 1):183–184PubMedGoogle Scholar
  62. 62.
    Riekki R, Parikka M, Jukkola A, Salo T, Risteli J, Oikarinen A (2002) Increased expression of collagen types I and III in human skin as a consequence of radiotherapy. Arch Dermatol Res 294(4):178–184.  https://doi.org/10.1007/s00403-002-0306-2 CrossRefPubMedGoogle Scholar
  63. 63.
    Wang Cheng RY-h, Ning F-g, Zhang G-a (2011) The content and ratio of type I and III collagen in skin differ with age and injury. Afr J Biotechnol 10(13):2524–2529.  https://doi.org/10.5897/AJB10.1999 Google Scholar
  64. 64.
    Verhaegen PD, Schouten HJ, Tigchelaar-Gutter W, van Marle J, van Noorden CJ, Middelkoop E, van Zuijlen PP (2012) Adaptation of the dermal collagen structure of human skin and scar tissue in response to stretch: an experimental study. Wound Repair Regen 20(5):658–666.  https://doi.org/10.1111/j.1524-475X.2012.00827.x CrossRefPubMedGoogle Scholar
  65. 65.
    Choi J-H, Cho M (2009) Calculations of intermode coupling constants and simulations of amide I, II, and III vibrational spectra of dipeptides. Chem Phys 361(3):168–175.  https://doi.org/10.1016/j.chemphys.2009.05.016 CrossRefGoogle Scholar
  66. 66.
    Gniadecka M, Nielsen OF, Wessel S, Heidenheim M, Christensen DH, Wulf HC (1998) Water and protein structure in photoaged and chronically aged skin. J Investig Dermatol 111(6):1129–1133.  https://doi.org/10.1046/j.1523-1747.1998.00430.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Pam Wen Lung
    • 1
  • Vamshi Krishna Tippavajhala
    • 2
  • Thiago de Oliveira Mendes
    • 3
  • Claudio A. Téllez-Soto
    • 3
  • Desirée Cigaran Schuck
    • 4
  • Carla Abdo Brohem
    • 4
  • Marcio Lorencini
    • 4
  • Airton Abrahão Martin
    • 3
    • 5
  1. 1.Institute of Research and Development (IP&D)Universidade do Vale do Paraiba (UNIVAP)São José dos CamposBrazil
  2. 2.Department of Pharmaceutics, Manipal College of Pharmaceutical SciencesManipal Academy of Higher EducationManipalIndia
  3. 3.Biomedical Engineering Innovation Center, Biomedical Vibrational Spectroscopy GroupUniversidade Brasil-UNBrItaqueraBrazil
  4. 4.Grupo O BoticárioSão José dos PinhaisBrazil
  5. 5.Departmento de FisicaUniversidade Federal do Piaui (UFPI)TeresinaBrazil

Personalised recommendations