Advertisement

Lasers in Medical Science

, Volume 33, Issue 5, pp 983–990 | Cite as

Photodynamic antimicrobial chemotherapy (PACT) using toluidine blue inhibits both growth and biofilm formation by Candida krusei

  • Bruna Graziele Marques da Silva
  • Moisés Lopes Carvalho
  • Isabela Bueno Rosseti
  • Stella Zamuner
  • Maricilia Silva CostaEmail author
Original Article

Abstract

Among non-albicans Candida species, the opportunistic pathogen Candida krusei emerges because of the high mortality related to infections produced by this yeast. The Candida krusei is an opportunistic pathogen presenting an intrinsic resistance to fluconazol. In spite of the reduced number of infections produced by C. krusei, its occurrence is increasing in some groups of patients submitted to the use of fluconazol for prophylaxis. Photodynamic antimicrobial chemotherapy (PACT) is a potential antimicrobial therapy that combines visible light and a nontoxic dye, known as a photosensitizer, producing reactive oxygen species (ROS) that can kill the treated cells. The objective of this study was to investigate the effects of PACT, using toluidine blue, as a photosensitizer on both growth and biofilm formation by Candida krusei. In this work, we studied the effect of the PACT, using TB on both cell growth and biofilm formation by C. krusei. PACT was performed using a light source with output power of 0.068 W and peak wavelength of 630 nm, resulting in a fluence of 20, 30, or 40 J/cm2. In addition, ROS production was determined after PACT. The number of samples used in this study varied from 6 to 8. Statistical differences were evaluated by analysis of variance (ANOVA) and post hoc comparison with Tukey-Kramer test. PACT inhibited both growth and biofilm formation by C. krusei. It was also observed that PACT stimulated ROS production. Comparing to cells not irradiated, irradiation was able to increase ROS production in 11.43, 6.27, and 4.37 times, in the presence of TB 0.01, 0.02, and 0.05 mg/mL, respectively. These results suggest that the inhibition observed in the cell growth after PACT could be related to the ROS production, promoting cellular damage. Taken together, these results demonstrated the ability of PACT reducing both cell growth and biofilm formation by C. krusei.

Keywords

Candida krusei Photodynamic antimicrobial chemotherapy PACT Toluidine blue Biofilm formation 

Notes

Acknowledgements

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Funding information

The authors would like to thank FAPESP and CNPq for the financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

In this study, all experiments were performed using cultures of Candida krusei (ATCC 6258); therefore, there was no need for approval by local authorities.

Informed consent

We have obtained permission from all the authors; we declare that the material has not been published in whole or in part elsewhere and the paper is not currently being considered for publication elsewhere.

References

  1. 1.
    Morgan J, Meltzer MI, Plikaytis BD, Sofair AN, Huie-White S, Wilcox S, Harrison LH, Seaberg EC, Hajjeh RA, Teutsch SM (2005) Excess mortality, hospital stay, and cost due to candidemia: a case control study using data from population-based candidemia surveillance. Infect Control Hosp Epidemiol 26:540–547CrossRefPubMedGoogle Scholar
  2. 2.
    Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Pfaller MA, Diekema DJ (2010) Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 36:1–53CrossRefPubMedGoogle Scholar
  4. 4.
    Pfaller MA, Jones RN, Messer SA, Edmond MB, Wenzel RP (1998) National surveillance of nosocomial blood stream infection due to species of Candida other than Candida albicans: frequency of occurrence and antifungal susceptibility in the SCOPE Program. SCOPE Participant Group. Surveillance and Control of Pathogens of Epidemiologic. Diagn Microbiol Infect Dis 30:121–129CrossRefPubMedGoogle Scholar
  5. 5.
    Bassetti M, Righi E, Costa A, Fasce R, Molinari MP, Rosso R, Pallavicini FB, Viscoli C (2006) Epidemiological trends in nosocomial candidemia in intensive care. BMC Infect Dis 6:21CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Arendrup MC (2010) Epidemiology of invasive candidiasis. Curr Opin Crit Care 16:445–452CrossRefPubMedGoogle Scholar
  7. 7.
    Pemán J, Cantón E, Quindós G, Eraso E, Alcoba J, Guinea J, Merino P, Ruiz-Pérez-de-Pipaon MT, Pérez-del-Molino L, Linares-Sicilia MJ, Marco F, García J, Roselló EM, Gómez-G-de-la-Pedrosa E, Borrell N, Porras A, Yagüe G, FUNGEMYCA Study Group (2012) Epidemiology, species distribution and in vitro antifungal susceptibility of fungaemia in a Spanish multicentre prospective survey. J Antimicrob Chemother 67:1181–1187CrossRefPubMedGoogle Scholar
  8. 8.
    Abbas J, Bodey GP, Hanna HA, Mardani M, Girgawy E, Abi-Said D, Whimbey E, Hachem R, Raad I (2000) Candida krusei fungemia. An escalating serious infection in immunocompromised patients. Arch Intern Med 160:2659–2664CrossRefPubMedGoogle Scholar
  9. 9.
    Muñoz P, Saánchez-Somolinos M, Alcalá L, Rodríguez-Créixems M, Peláez T, Bouza E (2005) Candida krusei fungaemia: antifungal susceptibility and clinical presentation of an uncommon entity during 15 years in a single general hospital. J Antimicrob Chemother 55:188–193CrossRefPubMedGoogle Scholar
  10. 10.
    Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Nagy E, Dobiasova S, Rinaldi M, Barton R, Veselov A, Global Antifungal Surveillance Group (2008) Candida krusei, a multidrug-resistant opportunistic fungal pathogen: geographic and temporal trends from the ARTEMIS DISK Antifungal Surveillance Program, 2001 to 2005. J Clin Microbiol 46:515–521CrossRefPubMedGoogle Scholar
  11. 11.
    Samaranayake YH, Samaranayake LP (1994) Candida krusei: biology, epidemiology, pathogenicity and clinical manifestations of an emerging pathogen. J Med Microbiol 41:295–310CrossRefPubMedGoogle Scholar
  12. 12.
    Espinel-Ingroff A, Pfaller MA, Bustamante B, Canton E, Fothergill A, Fuller J, Gonzalez GM, Lass-Flörl C, Lockhart SR, Martin-Mazuelos E, Meis JF, Melhem MS, Ostrosky-Zeichner L, Pelaez T, Szeszs MW, St-Germain G, Bonfietti LX, Guarro J, Turnidge J (2014) Multilaboratory study of epidemiological cutoff values for detection of resistance in eight Candida species to fluconazole, posaconazole, and voriconazole. Antimicrob Agents Chemother 58:2006–2012CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wingard JR, Merz WG, Rinaldi MG, Johnson TR, Karp JE, Saral R (1991) Increase in Candida krusei infection among patients with bone marrow transplantation and neutropenia treated prophylactically with fluconazole. N Engl J Med 325:1274–1277CrossRefPubMedGoogle Scholar
  14. 14.
    Cantón E, Pemán J, Gobernado M, Viudes A, Espinel-Ingroff A (2004) Patterns of amphotericin B killing kinetics against seven Candida species. Antimicrob Agents Chemother 48:2477–2482CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Scorzoni L, de Lucas MP, Mesa-Arango AC, Fusco-Almeida AM, Lozano E, Cuenca-Estrella M, Mendes-Giannini MJ, Zaragoza O (2013) Antifungal efficacy during Candida krusei infection in non-conventional models correlates with the yeast in vitro susceptibility profile. PLoS One 8:e60047CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Allison RR, Moghissi K (2013) Photodynamic therapy (PDT): PDT mechanisms. Clin Endoscopy 46:24–29CrossRefGoogle Scholar
  18. 18.
    Sharma SK, Mroz P, Dai T, Huang Y-Y, St. Denis TG, Hamblin MR (2012) Photodynamic therapy for cancer and for infections: what is the difference? Isr J Chem 52:691–705CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hamblin MR (2016) Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol 33:67–73CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wilson BC, Patterson MS (2008) The physics, biophysics and technology of photodynamic therapy. Phys Med Biol 53:R61–109CrossRefPubMedGoogle Scholar
  21. 21.
    Wainwright M (1998) Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother 42:13–28CrossRefPubMedGoogle Scholar
  22. 22.
    Sperandio FF, Sabino CP, Vecchio D, Garcia-Diaz M, Huang L, Huang Y-Y, Hamblin MR (2015) Antimicrobial photodynamic therapy in dentistry. In: de Freitas PM, Simões A (eds) Lasers in Dentistry: Guide for Clinical Practice. John Wiley & Sons, Inc, HobokenGoogle Scholar
  23. 23.
    Maisch T (2007) Anti-microbial photodynamic therapy: useful in the future? Lasers Med Sci 22:83–91CrossRefPubMedGoogle Scholar
  24. 24.
    Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3:436–450CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Vera DM, Haynes MH, Ball AR, Dai T, Astrakas C, Kelso MJ, Hamblin MR, Tegos GP (2012) Strategies to potentiate antimicrobial photoinactivation by overcoming resistant phenotypes. Photochem Photobiol 88:499–511CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418CrossRefPubMedGoogle Scholar
  27. 27.
    Huang L, Huang YY, Mroz P, Tegos GP, Zhiyentayev T, Sharma SK, Lu Z, Balasubramanian T, Krayer M, Ruzié C, Yang E, Kee HL, Kirmaier C, Diers JR, Bocian DF, Holten D, Lindsey JS, Hamblin MR (2010) Stable synthetic cationic bacteriochlorins as selective antimicrobial photosensitizers. Antimicrob Agents Chemother 54:3834–3841CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Calzavara-Pinton P, Rossi MT, Sala R, Venturini M (2012) Photodynamic antifungal chemotherapy. Photochem Photobiol 88:512–522CrossRefPubMedGoogle Scholar
  29. 29.
    Chabrier-Roselló Y, Foster TH, Pérez-Nazario N, Mitra S, Haidaris CG (2005) Sensitivity of Candida albicans germ tubes and biofilms to photofrin-mediated phototoxicity. Antimicrob Agents Chemother 49:4288–4295CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Demidova TN, Hamblin MR (2004) Photodynamic therapy targeted to pathogens. Int J Immunopathol Pharmacol 17:245–254CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Demidova TN, Hamblin MR (2005) Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother 49:2329–2335CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lambrechts SA, Aalders MC, Van Marle J (2005) Mechanistic study of the photodynamic inactivation of Candida albicans by a cationic porphyrin. Antimicrob Agents Chemother 49:2026–2034CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lam M, Jou PC, Lattif AA, Lee Y, Malbasa CL, Mukherjee PK, Oleinick NL, Ghannoum MA, Cooper KD, Baron ED (2011) Photodynamic therapy with Pc 4 induces apoptosis of Candida albicans. Photochem Photobiol 87:904–909CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Souza SC, Junqueira JC, Balducci I, Koga-Ito CY, Munin E, Jorge AO (2006) Photosensitization of different Candida species by low power laser light. J Photochem Photobiol B 83:34–38CrossRefPubMedGoogle Scholar
  35. 35.
    Munin E, Giroldo LM, Alves LP, Costa MS (2007) Study of germ tube formation by Candida albicans after photodynamic antimicrobial chemotherapy (PACT). J Photochem Photobiol B 88:16–20CrossRefPubMedGoogle Scholar
  36. 36.
    Carvalho GG, Felipe MP, Costa MS (2009) The photodynamic effect of methylene blue and toluidine blue on Candida albicans is dependent on medium conditions. J Microbiol 47:619–623CrossRefPubMedGoogle Scholar
  37. 37.
    Giroldo LM, Felipe MP, de Oliveira MA, Munin E, Alves LP, Costa MS (2009) Photodynamic antimicrobial chemotherapy (PACT) with methylene blue increases membrane permeability in Candida albicans. Lasers Med Sci 24:109–112CrossRefPubMedGoogle Scholar
  38. 38.
    Prates RA, Kato IT, Ribeiro MS, Tegos GP, Hamblin MR (2011) Influence of multidrug efflux systems on methylene blue-mediated photodynamic inactivation of Candida albicans. J Antimicrob Chemother 66:1525–1532CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rosseti IB, Chagas LR, Costa MS (2014) Photodynamic antimicrobial chemotherapy (PACT) inhibits biofilm formation by Candida albicans, increasing both ROS production and membrane permeability. Lasers Med Sci 29:1059–1064CrossRefPubMedGoogle Scholar
  40. 40.
    Tanaka M, Kinoshita M, Yoshihara Y, Shinomiya N, Seki S, Nemoto K, Hirayama T, Dai T, Huang L, Hamblin MR, Morimoto Y (2012) Optimal photosensitizers for photodynamic therapy of infections should kill bacteria but spare neutrophils. Photochem Photobiol 88:227–232CrossRefPubMedGoogle Scholar
  41. 41.
    Souza RC, Junqueira JC, Rossoni RD, Pereira CA, Munin E, Jorge AO (2010) Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers Med Sci 25:385–389CrossRefPubMedGoogle Scholar
  42. 42.
    Barbério GS, da Costa SV, dos Santos Silva M, de Oliveira TM, Silva TC, de Andrade Moreira Machado MA (2014) Photodynamic inactivation of Candida albicans mediated by a low density of light energy. Lasers Med Sci 29:907–910PubMedGoogle Scholar
  43. 43.
    Wilson M, Mia N (1993) Sensitisation of Candida albicans to killing by low-power laser light. J Oral Pathol Med 22:354–357CrossRefPubMedGoogle Scholar
  44. 44.
    Soares BM, da Silva DL, Sousa GR, Amorim JC, de Resende MA, Pinotti M, Cisalpino OS (2009) In vitro photodynamic inactivation of Candida spp. growth and adhesion to buccal epithelial cells. J Photochem Photobiol B 94:65–70CrossRefPubMedGoogle Scholar
  45. 45.
    Rodrigues GB, Dias-Baruffi M, Holman N, Wainwright M, Braga GU (2013) In vitro photodynamic inactivation of Candida species and mouse fibroblasts with phenothiazinium photosensitisers and red light. Photodiagn Photodyn Ther 10:141–149CrossRefGoogle Scholar
  46. 46.
    Espinel-Ingroff A, Canton E, Peman J, Rinaldi MG, Fothergill AW (2009) Comparison of 24-hour and 48-hour voriconazole MICs as determined by the Clinical and Laboratory Standards Institute broth microdilution method (M27–A3 document) in three laboratories: results obtained with 2,162 clinical isolates of Candida spp. and other yeasts. J Clin Microbiol 47:2766–2771CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ruhnke M, Rickerts V, Cornely OA, Buchheidt D, Glöckner A, Heinz W, Höhl R, Horré R, Karthaus M, Kujath P, Willinger B, Presterl E, Rath P, Ritter J, Glasmacher A, Lass-Flörl C, Groll AH (2011) Diagnosis and therapy of Candida infections: joint recommendations of the German Speaking Mycological Society and the Paul-Ehrlich-Society for Chemotherapy. Mycoses 54:279–310CrossRefPubMedGoogle Scholar
  48. 48.
    Van de Veerdonk FL, Netea MG, Joosten LA, van der Meer JW, Kullberg BJ (2010) Novel strategies for the prevention and treatment of Candida infections: the potential of immunotherapy. FEMS Microbiol Rev 34:1063–1075CrossRefPubMedGoogle Scholar
  49. 49.
    White TC, Marr KA, Bowden RA (1998) Clinical cellular and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11:382–402PubMedPubMedCentralGoogle Scholar
  50. 50.
    Cannon RD, Lamping E, Holmes AR, Niimi K, Tanabe K, Niimi M, Monk BC (2007) Candida albicans drug resistance another way to cope with stress. Microbiology 153:3211–3217CrossRefPubMedGoogle Scholar
  51. 51.
    Whiteway M, Bachewich C (2007) Morphogenesis in Candida albicans. Annu Rev Microbiol 61:529–553CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Köhler JR, Kadosh D, Lopez-Ribot JL (2010) Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 6:e1000828CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ha KC, White TC (1999) Effects of azole antifungal drugs on the transition from yeast cells to hyphae in susceptible and resistant isolates of the pathogenic yeast Candida albicans. Antimicrob Agents Chemother 43:763–768PubMedPubMedCentralGoogle Scholar
  54. 54.
    Ramage G, Saville SP, Thomas DP, López-Ribot JL (2005) Candida biofilms: an update. Eukaryot Cell 4:633–638CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Chandra J, Mukherjee PK, Ghannoum MA (2012) Candida biofilms associated with CVC and medical devices. Mycoses 55:46–57CrossRefGoogle Scholar
  56. 56.
    Bliss JM, Bigelow CE, Foster TH, Haidaris CG (2004) Susceptibility of candida species to photodynamic effects of photofrin. Antimicrob Agents Chemother 48:2000–2006CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Bruna Graziele Marques da Silva
    • 1
  • Moisés Lopes Carvalho
    • 1
  • Isabela Bueno Rosseti
    • 2
  • Stella Zamuner
    • 3
  • Maricilia Silva Costa
    • 1
    Email author
  1. 1.Instituto de Pesquisa e Desenvolvimento (IP&D)Universidade do Vale do Paraíba (UNIVAP)São José dos CamposBrazil
  2. 2.Anhanguera EducacionalSão José dos CamposBrazil
  3. 3.Posgraduated Program in MedicineUniversidade Nove de Julho (UNINOVE)São PauloBrazil

Personalised recommendations