Lasers in Medical Science

, Volume 33, Issue 3, pp 559–571 | Cite as

Infrared photobiomodulation (PBM) therapy improves glucose metabolism and intracellular insulin pathway in adipose tissue of high-fat fed mice

  • Gabriela Silva
  • Cleber Ferraresi
  • Rodrigo Teixeira de Almeida
  • Mariana Lopes Motta
  • Thiago Paixão
  • Vinicius Oliveira Ottone
  • Ivana Alice Fonseca
  • Murilo Xavier Oliveira
  • Etel Rocha-Vieira
  • Marco Fabrício Dias-Peixoto
  • Elizabethe Adriana Esteves
  • Cândido Celso Coimbra
  • Fabiano Trigueiro Amorim
  • Flávio de Castro Magalhães
Original Article

Abstract

Obesity represents a continuously growing global epidemic and is associated with the development of type 2 diabetes mellitus. The etiology of type 2 diabetes is related to the resistance of insulin-sensitive tissues to its action leading to impaired blood glucose regulation. Photobiomodulation (PBM) therapy might be a non-pharmacological, non-invasive strategy to improve insulin resistance. It has been reported that PBM therapy in combination with physical exercise reduces insulin resistance. Therefore, the aim of this study was to investigate the effects of PBM therapy on insulin resistance in obese mice. Male Swiss albino mice received low-fat control diet (n = 16, LFC) or high-fat diet (n = 18, HFD) for 12 weeks. From 9th to 12th week, the mice received PBM therapy (LASER) or Sham (light off) treatment and were allocated into four groups: LFC Sham (n = 8), LFC PBM (n = 8), HFD Sham (n = 9), and HFD PBM (n = 9). The PBM therapy was applied in five locations: to the left and right quadriceps muscle, upper limbs and center of the abdomen, during 40 s at each point, once a day, 5 days a week, for 4 weeks (780 nm, 250 mW/cm2, 10 J/cm2, 0.4 J per site; 2 J total dose per day). Insulin signaling pathway was evaluated in the epididymal adipose tissue. PBM therapy improved glucose tolerance and phosphorylation of Akt (Ser473) and reversed the HFD-induced reduction of GLUT4 content and phosphorylation of AS160 (Ser588). Also, PBM therapy reversed the increased area of epididymal and mesenteric adipocytes. The results showed that chronic PBM therapy improved parameters related to obesity and insulin resistance in HFD-induced obesity in mice.

Keywords

Low-level laser therapy Insulin resistance Glucose intolerance Type 2 diabetes mellitus Insulin signaling 

Notes

Acknowledgments

The authors disclose receipt of financial support for the research, authorship, and/or publication of this article: CAPES (PNPD-2455/2011), FAPEMIG (APQ-01915-13 and APQ-03058-16), and CNPq (447007/2014-9) grants. The authors wish to acknowledge Kurt A. Escobar for reviewing the manuscript. The authors would like to acknowledge the Centro Integrado de Pós-Graduação e Pesquisa em Saúde at the Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, for providing equipments and technical support for experiments.

Compliance with ethical standards

All procedures followed the National Council of Animal Experimentation (Brazil) and were approved by the local Ethics Committee on Animal Use under the number 028/2014.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Lewis CE, McTigue KM, Burke LE, Poirier P, Eckel RH, Howard BV, Allison DB, Kumanyika S, Pi-Sunyer FX (2009) Mortality, health outcomes, and body mass index in the overweight range: a science advisory from the American Heart Association. Circulation 119(25):3263–3271.  https://doi.org/10.1161/CIRCULATIONAHA.109.192574 CrossRefPubMedGoogle Scholar
  2. 2.
    Eikenberg JD, Davy BM (2013) Prediabetes: a prevalent and treatable, but often unrecognized, clinical condition. J Acad Nutr Diet 113(2):213–218.  https://doi.org/10.1016/j.jand.2012.10.018 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rui L (2013) Brain regulation of energy balance and body weight. Rev Endocr Metab Disord 14(4):387–407.  https://doi.org/10.1007/s11154-013-9261-9 CrossRefPubMedGoogle Scholar
  4. 4.
    Samuel VT, Shulman GI (2016) The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest 126(1):12–22.  https://doi.org/10.1172/JCI77812 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Haversen L, Danielsson KN, Fogelstrand L, Wiklund O (2009) Induction of proinflammatory cytokines by long-chain saturated fatty acids in human macrophages. Atherosclerosis 202(2):382–393.  https://doi.org/10.1016/j.atherosclerosis.2008.05.033 CrossRefPubMedGoogle Scholar
  6. 6.
    Trayhurn P, Wood IS (2004) Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 92(3):347–355CrossRefPubMedGoogle Scholar
  7. 7.
    Hirabara SM, Curi R, Maechler P (2010) Saturated fatty acid-induced insulin resistance is associated with mitochondrial dysfunction in skeletal muscle cells. J Cell Physiol 222(1):187–194.  https://doi.org/10.1002/jcp.21936 CrossRefPubMedGoogle Scholar
  8. 8.
    Hage Hassan R, Pacheco de Sousa AC, Mahfouz R, Hainault I, Blachnio-Zabielska A, Bourron O, Koskas F, Gorski J, Ferre P, Foufelle F, Hajduch E (2016) Sustained action of ceramide on THE insulin signaling pathway in muscle cells: IMPLICATION OF THE DOUBLE-STRANDED RNA-ACTIVATED PROTEIN KINASE. J Biol Chem 291(6):3019–3029.  https://doi.org/10.1074/jbc.M115.686949 CrossRefPubMedGoogle Scholar
  9. 9.
    Fujishiro M, Gotoh Y, Katagiri H, Sakoda H, Ogihara T, Anai M, Onishi Y, Ono H, Abe M, Shojima N, Fukushima Y, Kikuchi M, Oka Y, Asano T (2003) Three mitogen-activated protein kinases inhibit insulin signaling by different mechanisms in 3T3-L1 adipocytes. Mol Endocrinol 17(3):487–497.  https://doi.org/10.1210/me.2002-0131 CrossRefPubMedGoogle Scholar
  10. 10.
    Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS (2002) A central role for JNK in obesity and insulin resistance. Nature 420(6913):333–336.  https://doi.org/10.1038/nature01137 CrossRefPubMedGoogle Scholar
  11. 11.
    Braverman B, McCarthy RJ, Ivankovich AD, Forde DE, Overfield M, Bapna MS (1989) Effect of helium-neon and infrared laser irradiation on wound healing in rabbits. Lasers Surg Med 9(1):50–58CrossRefPubMedGoogle Scholar
  12. 12.
    Liang HL, Whelan HT, Eells JT, Meng H, Buchmann E, Lerch-Gaggl A, Wong-Riley M (2006) Photobiomodulation partially rescues visual cortical neurons from cyanide-induced apoptosis. Neuroscience 139(2):639–649.  https://doi.org/10.1016/j.neuroscience.2005.12.047 CrossRefPubMedGoogle Scholar
  13. 13.
    Begum R, Powner MB, Hudson N, Hogg C, Jeffery G (2013) Treatment with 670 nm light up regulates cytochrome C oxidase expression and reduces inflammation in an age-related macular degeneration model. PLoS One 8(2):e57828.  https://doi.org/10.1371/journal.pone.0057828 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sene-Fiorese M, Duarte FO, de Aquino Junior AE, Campos RM, Masquio DC, Tock L, de Oliveira Duarte AC, Damaso AR, Parizotto NA, Bagnato VS (2015) The potential of phototherapy to reduce body fat, insulin resistance and "metabolic inflexibility" related to obesity in women undergoing weight loss treatment. Lasers Surg Med 47(8):634–642.  https://doi.org/10.1002/lsm.22395 CrossRefPubMedGoogle Scholar
  15. 15.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419CrossRefPubMedGoogle Scholar
  16. 16.
    de Matos MA, Ottone Vde O, Duarte TC, Sampaio PF, Costa KB, Fonseca CA, Neves MP, Schneider SM, Moseley P, Coimbra CC, Magalhaes Fde C, Rocha-Vieira E, Amorim FT (2014) Exercise reduces cellular stress related to skeletal muscle insulin resistance. Cell Stress Chaperones 19(2):263–270.  https://doi.org/10.1007/s12192-013-0453-8 CrossRefPubMedGoogle Scholar
  17. 17.
    Aguiar PF, Magalhaes SM, Fonseca IA, da Costa Santos VB, de Matos MA, Peixoto MF, Nakamura FY, Crandall C, Araujo HN, Silveira LR, Rocha-Vieira E, de Castro Magalhaes F, Amorim FT (2016) Post-exercise cold water immersion does not alter high intensity interval training-induced exercise performance and Hsp72 responses, but enhances mitochondrial markers. Cell Stress Chaperones 21(5):793–804.  https://doi.org/10.1007/s12192-016-0704-6 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  19. 19.
    Schmid GM, Converset V, Walter N, Sennitt MV, Leung KY, Byers H, Ward M, Hochstrasser DF, Cawthorne MA, Sanchez JC (2004) Effect of high-fat diet on the expression of proteins in muscle, adipose tissues, and liver of C57BL/6 mice. Proteomics 4(8):2270–2282.  https://doi.org/10.1002/pmic.200300810 CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang M, Hu T, Zhang S, Zhou L (2015) Associations of different adipose tissue depots with insulin resistance: a systematic review and meta-analysis of observational studies. Sci Rep 5:18495.  https://doi.org/10.1038/srep18495 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Aquino AE Jr, Sene-Fiorese M, Paolillo FR, Duarte FO, Oishi JC, Pena AA Jr, Duarte AC, Hamblin MR, Bagnato VS, Parizotto NA (2013) Low-level laser therapy (LLLT) combined with swimming training improved the lipid profile in rats fed with high-fat diet. Lasers Med Sci 28(5):1271–1280.  https://doi.org/10.1007/s10103-012-1223-z CrossRefPubMedGoogle Scholar
  22. 22.
    Aquino AE Jr, Sene-Fiorese M, Castro CA, Duarte FO, Oishi JC, Santos GC, Silva KA, Fabrizzi F, Moraes G, Matheus SM, Duarte AC, Bagnato VS, Parizotto NA (2015) Can low-level laser therapy when associated to exercise decrease adipocyte area? J Photochem Photobiol B 149:21–26.  https://doi.org/10.1016/j.jphotobiol.2015.04.033 CrossRefPubMedGoogle Scholar
  23. 23.
    White PA, Cercato LM, Araujo JM, Souza LA, Soares AF, Barbosa AP, Neto JM, Marcal AC, Machado UF, Camargo EA, Santos MR, Brito LC (2013) Model of high-fat diet-induced obesity associated to insulin resistance and glucose intolerance. Arq Bras Endocrinol Metabol 57(5):339–345CrossRefPubMedGoogle Scholar
  24. 24.
    Singh B, Saxena A (2010) Surrogate markers of insulin resistance: a review. World J Diabetes 1(2):36–47.  https://doi.org/10.4239/wjd.v1.i2.36 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414(6865):799–806.  https://doi.org/10.1038/414799a CrossRefPubMedGoogle Scholar
  26. 26.
    Treebak JT, Pehmoller C, Kristensen JM, Kjobsted R, Birk JB, Schjerling P, Richter EA, Goodyear LJ, Wojtaszewski JF (2014) Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle. J Physiol 592(2):351–375.  https://doi.org/10.1113/jphysiol.2013.266338 CrossRefPubMedGoogle Scholar
  27. 27.
    Sakamoto K, Holman GD (2008) Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am J Phys Endocrinol Metab 295(1):E29–E37.  https://doi.org/10.1152/ajpendo.90331.2008 CrossRefGoogle Scholar
  28. 28.
    Sharma N, Wang H, Arias EB, Castorena CM, Cartee GD (2015) Mechanisms for independent and combined effects of calorie restriction and acute exercise on insulin-stimulated glucose uptake by skeletal muscle of old rats. Am J Phys Endocrinol Metab 308(7):E603–E612.  https://doi.org/10.1152/ajpendo.00618.2014 CrossRefGoogle Scholar
  29. 29.
    Lee BC, Kim MS, Pae M, Yamamoto Y, Eberle D, Shimada T, Kamei N, Park HS, Sasorith S, Woo JR, You J, Mosher W, Brady HJ, Shoelson SE, Lee J (2016) Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity. Cell Metab 23(4):685–698.  https://doi.org/10.1016/j.cmet.2016.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wiedemann MS, Wueest S, Item F, Schoenle EJ, Konrad D (2013) Adipose tissue inflammation contributes to short-term high-fat diet-induced hepatic insulin resistance. Am J Phys Endocrinol Metab 305(3):E388–E395.  https://doi.org/10.1152/ajpendo.00179.2013 CrossRefGoogle Scholar
  31. 31.
    Consitt LA, Bell JA, Houmard JA (2009) Intramuscular lipid metabolism, insulin action, and obesity. IUBMB Life 61(1):47–55.  https://doi.org/10.1002/iub.142 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hawley JA, Lessard SJ (2008) Exercise training-induced improvements in insulin action. Acta Physiol 192(1):127–135.  https://doi.org/10.1111/j.1748-1716.2007.01783.x CrossRefGoogle Scholar
  33. 33.
    Frosig C, Rose AJ, Treebak JT, Kiens B, Richter EA, Wojtaszewski JF (2007) Effects of endurance exercise training on insulin signaling in human skeletal muscle: interactions at the level of phosphatidylinositol 3-kinase, Akt, and AS160. Diabetes 56(8):2093–2102.  https://doi.org/10.2337/db06-1698 CrossRefPubMedGoogle Scholar
  34. 34.
    Chung J, Nguyen AK, Henstridge DC, Holmes AG, Chan MH, Mesa JL, Lancaster GI, Southgate RJ, Bruce CR, Duffy SJ, Horvath I, Mestril R, Watt MJ, Hooper PL, Kingwell BA, Vigh L, Hevener A, Febbraio MA (2008) HSP72 protects against obesity-induced insulin resistance. Proc Natl Acad Sci U S A 105(5):1739–1744.  https://doi.org/10.1073/pnas.0705799105 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Choo HJ, Kim JH, Kwon OB, Lee CS, Mun JY, Han SS, Yoon YS, Yoon G, Choi KM, Ko YG (2006) Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia 49(4):784–791.  https://doi.org/10.1007/s00125-006-0170-2 CrossRefPubMedGoogle Scholar
  36. 36.
    Martins AR, Nachbar RT, Gorjao R, Vinolo MA, Festuccia WT, Lambertucci RH, Cury-Boaventura MF, Silveira LR, Curi R, Hirabara SM (2012) Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function. Lipids Health Dis 11:30.  https://doi.org/10.1186/1476-511X-11-30 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Karu TI (2010) Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 62(8):607–610.  https://doi.org/10.1002/iub.359 CrossRefPubMedGoogle Scholar
  38. 38.
    Avci P, Nyame TT, Gupta GK, Sadasivam M, Hamblin MR (2013) Low-level laser therapy for fat layer reduction: a comprehensive review. Lasers Surg Med 45(6):349–357.  https://doi.org/10.1002/lsm.22153 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Huang YY, Chen AC, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose Response 7(4):358–383.  https://doi.org/10.2203/dose-response.09-027.Hamblin CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16:4.  https://doi.org/10.1186/1423-0127-16-4 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2017

Authors and Affiliations

  • Gabriela Silva
    • 1
  • Cleber Ferraresi
    • 2
    • 3
  • Rodrigo Teixeira de Almeida
    • 1
  • Mariana Lopes Motta
    • 1
  • Thiago Paixão
    • 1
  • Vinicius Oliveira Ottone
    • 1
  • Ivana Alice Fonseca
    • 1
  • Murilo Xavier Oliveira
    • 4
  • Etel Rocha-Vieira
    • 1
  • Marco Fabrício Dias-Peixoto
    • 1
  • Elizabethe Adriana Esteves
    • 1
  • Cândido Celso Coimbra
    • 1
    • 5
  • Fabiano Trigueiro Amorim
    • 1
    • 6
  • Flávio de Castro Magalhães
    • 1
  1. 1.Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Faculdade de Ciências Básicas e da SaúdeUniversidade Federal dos Vales do Jequitinhonha e MucuriDiamantinaBrazil
  2. 2.Post-graduation Program in Physical Therapy in Functional Health, Physical Therapy DepartmentUniversidade do Sagrado CoraçãoSão PauloBrazil
  3. 3.Post-Graduation Program in Biomedical EngineeringUniversidade BrasilSão PauloBrazil
  4. 4.Programa de Pós-Graduação em Reabilitação e Desempenho Funcional, Physiotherapy Department, Faculdade de Ciências Básicas e da SaúdeUniversidade Federal dos Vales do Jequitinhonha e MucuriDiamantinaBrazil
  5. 5.Endocrinology Laboratory, Biological Sciences InstituteFederal University of Minas GeraisBelo HorizonteBrazil
  6. 6.University of New MexicoAlbuquerqueUSA

Personalised recommendations