Lasers in Medical Science

, Volume 33, Issue 3, pp 453–460 | Cite as

Low-level laser therapy improves the VO2 kinetics in competitive cyclists

  • Fábio J. LanferdiniEmail author
  • Renata L. Krüger
  • Bruno M. Baroni
  • Caetano Lazzari
  • Pedro Figueiredo
  • Alvaro Reischak-Oliveira
  • Marco A. Vaz
Original Article


Some evidence supports that low-level laser therapy (LLLT) reduces neuromuscular fatigue, so incrementing sports performance. A previous randomized controlled trial of our group showed increased exercise tolerance in male competitive cyclists treated with three different LLLT doses (3, 6, and 9 J/diode; or 135, 270, and 405 J/thigh) before time-to-exhaustion cycling tests. Now, the present study was designed to evaluate the effects of these LLLT doses on the VO2 kinetics of athletes during cycling tests. Twenty male competitive cyclists (29 years) participated in a crossover, randomized, double-blind, and placebo-controlled trial. On the first day, the participants performed an incremental cycling test to exhaustion to determine maximal oxygen uptake (VO2MAX) and maximal power output (POMAX), as well as a familiarization with the time-to-exhaustion test. In the following days (2 to 5), all participants performed time-to-exhaustion tests at POMAX. Before the exhaustion test, different doses of LLLT (3, 6, and 9 J/diode; or 135, 270, and 405 J/thigh, respectively) or placebo were applied bilaterally to the quadriceps muscle. All exhaustion tests were monitored online by an open-circuit spirometry system in order to analyze the VO2 amplitude, VO2 delay time, time constant (tau), and O2 deficit. Tau and O2 deficit were decreased with LLLT applications compared to the placebo condition (p < 0.05). No differences (p > 0.05) were found between the experimental conditions for VO2 amplitude and VO2 delay time. In conclusion, LLLT decreases tau and O2 deficit during time-to-exhaustion tests in competitive cyclists, and these changes in VO2 kinetics response can be one of the possible mechanisms to explain the ergogenic effect induced by LLLT.


Phototherapy Cycling VO2 kinetics Time-to-exhaustion Sport performance 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee, approved by the Ethics Committee of Human Research where the study was conducted (number 708.362) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


  1. 1.
    Ferraresi C, Hamblin MR, Parizotto NA (2012) Low-level laser (light) therapy (LLLT) on muscle tissue: performance, fatigue and repair benefited by the power of light. Photonics Lasers Med 1(4):267–286CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Borsa PA, Larkin KA, True JM (2013) Does phototherapy enhance skeletal muscle contractile function and postexercise recovery? A systematic review. J Athlet Training 48(1):57–67CrossRefGoogle Scholar
  3. 3.
    Leal-Junior EC, Vanin AA, Miranda EF, de Carvalho Pde T, Dal Corso S, Bjordal JM (2015) Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci 30(2):925–939CrossRefPubMedGoogle Scholar
  4. 4.
    Huang YY, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy—an update. Dose Response 9(4):602–618CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Baroni BM, Leal Junior EC, Geremia JM, Diefenthaeler F, Vaz MA (2010) Effect of light-emitting diodes therapy (LEDT) on knee extensor muscle fatigue. Photomed Laser Surg 28(5):653–658CrossRefPubMedGoogle Scholar
  6. 6.
    Miranda EF, Leal-Junior EC, Marchetti PH, Dal Corso S (2014) Acute effects of light emitting diodes therapy (LEDT) in muscle function during isometric exercise in patients with chronic obstructive pulmonary disease: preliminary results of a randomized controlled trial. Lasers Med Sci 29(1):359–365CrossRefPubMedGoogle Scholar
  7. 7.
    Baroni BM, Leal Junior EC, De Marchi T, Lopes LA, Salvador M, Vaz MA (2010) Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur J Appl Physiol 110:789–796CrossRefPubMedGoogle Scholar
  8. 8.
    Ferraresi C, Beltrame T, Fabrizzi F, Nascimento ES, Karsten M, Francisco Cde O, Borghi-Silva A, Catai AM, Cardoso DR, Ferreira AG, Hamblin MR, Bagnato VS, Parizotto NA (2015) Muscular pre-conditioning using light-emitting diode therapy (LEDT) for high-intensity exercise: a randomized double-blind placebo-controlled trial with a single elite runner. Physiother Theory Pract 31(5):354–361CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    De Marchi T, Leal Junior EC, Bortoli C, Tomazoni SS, Lopes-Martins RA, Salvador M (2012) Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci 27(1):231–236CrossRefPubMedGoogle Scholar
  10. 10.
    da Silva Alves MA, Pinfildi CE, Neto LN, Lourenco RP, de Azevedo PH, Dourado VZ (2014) Acute effects of low-level laser therapy on physiologic and electromyographic responses to the cardiopulmonary exercise testing in healthy untrained adults. Lasers Med Sci 29(6):1945–1951CrossRefPubMedGoogle Scholar
  11. 11.
    Leal Junior EC, Baroni BM, Rossi RP, de Godoi V, De Marchi T, Tomazoni SS, de Almeida P, Salvador M, Grosselli D, Generosi RA, Basso M, Mancalossi JL, Brandão RA, Lopes-Martins RA (2011) A fototerapia com diodo emissor de luz (LEDT) aplicada pré-exercício inibe a peroxição lipídica em atletas após exercício de alta intensidade. Um estudo preliminar. Rev Bras Med Esporte 17(1):8–12CrossRefGoogle Scholar
  12. 12.
    Leal Junior EC, de Godoi V, Mancalossi JL, Rossi RP, De Marchi T, Parente M, Grosselli D, Generosi RA, Basso M, Frigo L, Tomazoni SS, Bjordal JM, Lopes-Martins RA (2011) Comparison between cold water immersion therapy (CWIT) and light emitting diode therapy (LEDT) in short-term skeletal muscle recovery after high-intensity exercise in athletes—preliminary results. Lasers Med Sci 26(4):493–501CrossRefPubMedGoogle Scholar
  13. 13.
    Leal Junior EC, Lopes-Martins RA, Baroni BM, De Marchi T, Taufer D, Manfro DS, Rech M, Danna V, Grosselli D, Generosi RA, Marcos RL, Ramos L, Bjordal JM (2009) Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers Med Sci 24(6):857–863CrossRefPubMedGoogle Scholar
  14. 14.
    Lanferdini FJ, Bini RR, Baroni BM, Klein KD, Carpes FP, Vaz MA (2017) Low-level laser therapy improves performance and reduces fatigue in competitive cyclists. Int J Sports Physiol Perform 1–27.
  15. 15.
    Albuquerque-Pontes GM, Vieira Rde P, Tomazoni SS, Caires CO, Nemeth V, Vanin AA, Santos LA, Pinto HD, Marcos RL, Bjordal JM, de Carvalho Pde T, Leal-Junior EC (2015) Effect of pre-irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. Lasers Med Sci 30(1):59–66CrossRefPubMedGoogle Scholar
  16. 16.
    Hayworth CR, Rojas JC, Padilla E, Holmes GM, Sheridan EC, Gonzalez-Lima F (2010) In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochem Photobiol 86(3):673–680CrossRefPubMedGoogle Scholar
  17. 17.
    Wang X, Tian F, Soni SS, Gonzalez-Lima F, Liu H (2016) Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser. Sci Rep 6:30540CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ferraresi C, de Sousa MV, Huang YY, Bagnato VS, Parizotto NA, Hamblin MR (2015) Time response of increases in ATP and muscle resistance to fatigue after low-level laser (light) therapy (LLLT) in mice. Lasers Med Sci 30(4):1259–1267CrossRefPubMedGoogle Scholar
  19. 19.
    Gupta A, Avci P, Sadasivam M, Chandran R, Parizotto N, Vecchio D, de Melo WC, Dai T, Chiang LY, Hamblin MR (2013) Shining light on nanotechnology to help repair and regeneration. Biotechnol Adv 31(5):607–631CrossRefPubMedGoogle Scholar
  20. 20.
    Miranda EF, Vanin AA, Tomazoni SS, Grandinetti Vdos S, de Paiva PR, Machado Cdos S, Monteiro KK, Casalechi HL, de Tarso P, de Carvalho C, Leal-Junior EC (2016) Using pre-exercise photobiomodulation therapy combining super-pulsed lasers and light-emitting diodes to improve performance in progressive cardiopulmonary exercise tests. J Athl Train 51(2):129–135CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Arena R, Humphrey R, Peberdy MA (2001) Measurement of oxygen consumption on-kinetics during exercise: implications for patients with heart failure. J Card Fail 7(4):302–310CrossRefPubMedGoogle Scholar
  22. 22.
    Ansley L, Cangley P (2009) Determinants of “optimal” cadence during cycling. Eur J Sports Sci 9(2):61–85CrossRefGoogle Scholar
  23. 23.
    Marfell-Jones M, Olds T, Stewart A, Carter L (2006) International standards for anthropometric assessment. ISAK, PotchefstroomGoogle Scholar
  24. 24.
    de Vey Mestdagh K (1998) Personal perspective: in search of an optimum cycling posture. Appl Erg 29(5):325–334CrossRefGoogle Scholar
  25. 25.
    Davison RCR, Corbett J, Ansley L (2009) Influence of temperature and protocol on the calibration of the Computrainer electromagnetically-braked cycling ergometer. Int Sport Med J 10(2):66–76Google Scholar
  26. 26.
    Duc S, Betik AC, Grappe F (2005) EMG activity does not change during a time trial in competitive cyclists. Int J Sports Med 26(2):145–150CrossRefPubMedGoogle Scholar
  27. 27.
    Baroni BM, Rodrigues R, Freire BB, Franke Rde A, Geremia JM, Vaz MA (2015) Effect of low-level laser therapy on muscle adaptation to knee extensor eccentric training. Eur J Appl Physiol 115(3):639–647CrossRefPubMedGoogle Scholar
  28. 28.
    Wang Y, Huang YY, Lyu P, Hamblin MR (2017) Photobiomodulation of human adipose-derived stem cells using 810 nm and 980 nm lasers operates via different mechanisms of action. Biochim Biophys Acta 1861(2):441–449CrossRefPubMedGoogle Scholar
  29. 29.
    Bini R, Hume PA, Croft JL (2011) Effects of bicycle saddle height on knee injury risk and cycling performance. Sports Med 41(6):463–476CrossRefPubMedGoogle Scholar
  30. 30.
    Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol (1985) 60(6):2020–2027CrossRefGoogle Scholar
  31. 31.
    Sousa A, Figueiredo P, Zamparo P, Pyne DB, Vilas-Boas JP, Fernandes RJ (2015) Exercise modality effect on bioenergetical performance at V O2max intensity. Med Sci Sports Exerc 47(8):1705–1713CrossRefPubMedGoogle Scholar
  32. 32.
    Ma S, Rossiter HB, Barstow TJ, Casaburi R, Porszasz J (2010) Clarifying the equation for modeling of VO2 kinetics above the lactate threshold. J Appl Physiol (1985) 109(4):1283–1284CrossRefGoogle Scholar
  33. 33.
    Whipp BJ, Casaburi R (1982) Characterizing O2 uptake response kinetics during exercise. Int J Sports Med 3(2):97–99CrossRefPubMedGoogle Scholar
  34. 34.
    Hughson RL, Tschakovsky ME, Houston ME (2001) Regulation of oxygen consumption at the onset of exercise. Exerc Sport Sci Rev 29(3):129–133CrossRefPubMedGoogle Scholar
  35. 35.
    Hepple RT (2002) The role of O2 supply in muscle fatigue. Can J Appl Physiol 27(1):56–69CrossRefPubMedGoogle Scholar
  36. 36.
    Karu TI (2010) Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 62(8):607–610CrossRefPubMedGoogle Scholar
  37. 37.
    Silveira PC, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R (2009) Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B 95(2):89–92CrossRefPubMedGoogle Scholar
  38. 38.
    Barstow TJ, Casaburi R, Wasserman K (1993) O2 uptake kinetics and the O2 deficit as related to exercise intensity and blood lactate. J Appl Physiol 75(2):755–762CrossRefPubMedGoogle Scholar
  39. 39.
    Rossiter HB, Ward SA, Kowalchuk JM, Howe FA, Griffiths JR, Whipp BJ (2002) Dynamic asymmetry of phosphocreatine concentration and O(2) uptake between the on- and off-transients of moderate- and high-intensity exercise in humans. J Physiol 541(Pt 3):991–1002CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ferraresi C, Kaippert B, Avci P, Huang YY, de Sousa MV, Bagnato VS, Parizotto NA, Hamblin MR (2015) Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3-6 h. Photochem Photobiol 91(2):411–416CrossRefPubMedGoogle Scholar
  41. 41.
    Maegawa Y, Itoh T, Hosokawa T, Yaegashi K, Nishi M (2000) Effects of near-infrared low-level laser irradiation on microcirculation. Lasers Surg Med 27(5):427–437CrossRefPubMedGoogle Scholar
  42. 42.
    Leal Junior EC, Lopes-Martins RA, Frigo L, De Marchi T, Rossi RP, de Godoi V, Tomazoni SS, Silva DP, Basso M, Filho PL, de Valls Corsetti F, Iversen VV, Bjordal JM (2010) Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther 40(8):524–532CrossRefPubMedGoogle Scholar
  43. 43.
    Wang X, Tian F, Reddy DD, Nalawade SS, Barrett DW, Gonzalez-Lima F, Liu H (2017) Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: a broadband near-infrared spectroscopy study. J Cereb Blood Flow Metab.
  44. 44.
    Leal Junior EC, Lopes-Martins RA, Baroni BM, De Marchi T, Rossi RP, Grosselli D, Generosi RA, de Godoi V, Basso M, Mancalossi JL, Bjordal JM (2009) Comparison between single-diode low-level laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise. Photomed Laser Surg 27(4):617–623CrossRefPubMedGoogle Scholar
  45. 45.
    de Almeida P, Lopes-Martins RA, Tomazoni SS, Silva JA Jr, de Carvalho Pde T, Bjordal JM, Leal Junior EC (2011) Low-level laser therapy improves skeletal muscle performance, decreases skeletal muscle damage and modulates mRNA expression of COX-1 and COX-2 in a dose-dependent manner. Photochem Photobiol 87(5):1159–1163CrossRefPubMedGoogle Scholar
  46. 46.
    Lopes-Martins RA, Marcos RL, Leonardo PS, Prianti AC Jr, Muscara MN, Aimbire F, Frigo L, Iversen VV, Bjordal JM (2006) Effect of low-level laser (Ga-Al-As 655 nm) on skeletal muscle fatigue induced by electrical stimulation in rats. J Appl Physiol 101(1):283–288CrossRefPubMedGoogle Scholar
  47. 47.
    Santos LA, Marcos RL, Tomazoni SS, Vanin AA, Antonialli FC, Grandinetti Vdos S, Albuquerque-Pontes GM, de Paiva PR, Lopes-Martins RA, de Carvalho Pde T, Bjordal JM, Leal-Junior EC (2014) Effects of pre-irradiation of low-level laser therapy with different doses and wavelengths in skeletal muscle performance, fatigue, and skeletal muscle damage induced by tetanic contractions in rats. Lasers Med Sci 29(5):1617–1626CrossRefPubMedGoogle Scholar
  48. 48.
    Antonialli FC, De Marchi T, Tomazoni SS, Vanin AA, dos Santos Grandinetti V, de Paiva PR, Pinto HD, Miranda EF, de Tarso Camillo de Carvalho P, Leal-Junior EC (2014) Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers Med Sci 29(6):1967–1976CrossRefPubMedGoogle Scholar
  49. 49.
    Kelencz CA, Munoz IS, Amorim CF, Nicolau RA (2010) Effect of low-power gallium-aluminum-arsenium noncoherent light (640 nm) on muscle activity: a clinical study. Photomed Laser Sur 28(5):647–652CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • Fábio J. Lanferdini
    • 1
    • 2
    Email author
  • Renata L. Krüger
    • 1
    • 3
  • Bruno M. Baroni
    • 4
  • Caetano Lazzari
    • 5
  • Pedro Figueiredo
    • 6
    • 7
  • Alvaro Reischak-Oliveira
    • 1
  • Marco A. Vaz
    • 1
  1. 1.Laboratório de Pesquisa do Exercício, Escola de Educação Física, Fisioterapia e DançaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Universidade Regional Integrada do Alto Uruguai e das MissõesSanto ÂngeloBrazil
  3. 3.University of CalgaryCalgaryCanada
  4. 4.Departamento de FisioterapiaUniversidade Federal de Ciências da Saúde de Porto AlegrePorto AlegreBrazil
  5. 5.Laboratório de Biomecânica, Universidade Federal de Santa CatarinaFlorianópolisBrazil
  6. 6.Portugal Football SchoolPortuguese Football FederationOeirasPortugal
  7. 7.Research Center in Sports Sciences, Health Sciences and Human Development, CIDESDUniversity Institute of MaiaISMAIPortugal

Personalised recommendations