Mesenchymal stromal cell and osteoblast responses to oxidized titanium surfaces pre-treated with λ = 808 nm GaAlAs diode laser or chlorhexidine: in vitro study

  • 546 Accesses

  • 4 Citations


Preservation of implant biocompatibility following peri-implantitis treatments is a crucial issue in odontostomatological practice, being closely linked to implant re-osseointegration. Our aim was to assess the responses of osteoblast-like Saos2 cells and adult human bone marrow-mesenchymal stromal cells (MSCs) to oxidized titanium surfaces (TiUnite®, TiU) pre-treated with a 808 ± 10 nm GaAlAs diode laser operating in non-contact mode, in continuous (2 W, 400 J/cm2; CW) or pulsed (20 kHz, 7 μs, 0.44 W, 88 J/cm2; PW) wave, previously demonstrated to have a strong bactericidal effect and proposed as optional treatment for peri-implantitis. The biocompatibility of TiU surfaces pre-treated with chlorhexidine digluconate (CHX) was also evaluated. In particular, in order to mimic the in vivo approach, TiU surfaces were pre-treated with CHX (0.2%, 5 min); CHX and rinse; and CHX, rinse and air drying. In some experiments, the cells were cultured on untreated TiU before being exposed to CHX. Cell viability (MTS assay), proliferation (EdU incorporation assay; Ki67 confocal immunofluorescence analysis), adhesion (morphological analysis of actin cytoskeleton organization), and osteogenic differentiation (osteopontin confocal immunofluorescence analysis; mineralized bone-like nodule formation) analyses were performed. CHX resulted cytotoxic in all experimental conditions. Diode laser irradiation preserved TiU surface biocompatibility. Notably, laser treatment appeared even to improve the known osteoconductive properties of TiU surfaces. Within the limitations of an in vitro experimentation, this study contributes to provide additional experimental basis to support the potential use of 808 ± 10 nm GaAlAs diode laser at the indicated irradiation setting, in the treatment of peri-implantitis and to discourage the use of CHX.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Albrektsson T, Canullo L, Cochran D, De Bruyn H (2016) “Peri-Implantitis”: a complication of a foreign body or a man-made “disease”. Facts and fiction. Clin Implant Dent Relat Res 18:840–849. doi:10.1111/cid.12427

  2. 2.

    Sousa V, Nibali L, Spratt D, Dopico J, Mardas N, Petrie A, Donos N (2016) Peri-implant and periodontal microbiome diversity in aggressive periodontitis patients: a pilot study. Clin Oral Implants Res. doi:10.1111/clr.12834

  3. 3.

    Valderrama P, Blansett J, Gonzalez MG, Cantu MG, Wilson TG (2014) Detoxification of implant surfaces affected by peri-implant disease: an overview of non-surgical methods. Open Dental Journal 8:77–84. doi:10.2174/1874210601408010077

  4. 4.

    Yuan K, Chan YJ, Kung KC, Lee TM (2014) Comparison of osseointegration on various implant surfaces after bacterial contamination and cleaning: a rabbit study. Int J Oral Maxillofac Implants 29:32–40. doi:10.11607/jomi.2436

  5. 5.

    Froum SJ, Dagba AS, Shi Y, Perez-Asenjo A, Rosen PS, Wang WC (2016) Successful surgical protocols in the treatment of peri-implantitis: a narrative review of the literature. Implant Dent 25:416–426. doi:10.1097/ID.0000000000000428

  6. 6.

    Htet M, Madi M, Zakaria O, Miyahara T, Xin W, Lin Z, Aoki K, Kasugai S (2016) Decontamination of anodized implant surface with different modalities for peri-implantitis treatment: lasers and mechanical debridement with citric acid. J Periodontol 87:953–961. doi:10.1902/jop.2016.150615

  7. 7.

    Lang MS, Cerutis DR, Miyamoto T, Nunn ME (2016) Cell attachment following instrumentation with titanium and plastic instruments, diode laser, and titanium brush on titanium, titanium-zirconium, and zirconia surfaces. Int J Oral Maxillofac Implants 31:799–806. doi:10.11607/jomi.4440

  8. 8.

    Ouanounou A, Hassanpour S, Glogauer M (2016) The influence of systemic medications on osseointegration of dental implants. J Can Dent Assoc 82:g7

  9. 9.

    Romanos G (2015) Current concepts in the use of lasers in periodontal and implant dentistry. J Indian Soc Periodontol 19:490–494. doi:10.4103/0972-124X.153471

  10. 10.

    Romeo U, Nardi GM, Libotte F, Sabatini S, Palaia G, Grassi FR (2016) The antimicrobial photodynamic therapy in the treatment of peri-implantitis. Int J Dent. doi:10.1155/2016/7692387

  11. 11.

    Natto ZS, Aladmawy M, Levi PA Jr, Wang HL (2015) Comparison of the efficacy of different types of lasers for the treatment of peri-implantitis: a systematic review. Int J Oral Maxillofac Implants 30:338–345. doi:10.11607/jomi.3846

  12. 12.

    Ashnagar S, Nowzari H, Nokhbatolfoghahaei H, Yaghoub Zadeh B, Chiniforush N, Choukhachi ZN (2014) Laser treatment of peri-implantitis: a literature review. J Lasers Med Sci 5:153–162

  13. 13.

    Kreisler M, Götz H, Duschne H (2002) Effect of Nd:YAG, Ho:YAG, Er:YAG, CO2, and GaAIAs laser irradiation on surface properties of endosseous dental implants. Int J Oral Maxillofac Implants 17:202–211

  14. 14.

    Giannelli M, Lasagni M, Bani D (2015) Thermal effects of λ=808 nm GaAlAs diode laser irradiation on different titanium surfaces. Lasers Med Sci 30:2341–2352. doi:10.1007/s10103-015-1801-y

  15. 15.

    Rios FG, Viana ER, Ribeiro GM, González JC, Abelenda A, Peruzzo DC (2016) Temperature evaluation of dental implant surface irradiated with high-power diode laser. Lasers Med Sci 31:1309–1316. doi:10.1007/s10103-016-1974-z

  16. 16.

    Gittens RA, Olivares-Navarrete R, McLachlan T, Cai Y, Hyzy SL, Schneider JM, Schwartz Z, Sandhage KH, Boyan BD (2012) Differential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titanium-aluminum-vanadium alloy surfaces. Biomaterials 33:8986–8994. doi:10.1016/j.biomaterials

  17. 17.

    Kohal RJ, Bächle M, Att W, Chaar S, Altmann B, Renz A, Butz F (2013) Osteoblast and bone tissue response to surface modified zirconia and titanium implant materials. Dent Mater 29:763–776. doi:10.1016/

  18. 18.

    Feller L, Jadwat Y, Khammissa RA, Meyerov R, Schechter I, Lemmer J (2015) Cellular responses evoked by different surface characteristics of intraosseous titanium implants. Biomed Res Int. doi:10.1155/2015/171945

  19. 19.

    Mailoa J, Lin GH, Chan HL, MacEachern M, Wang HL (2014) Clinical outcomes of using lasers for peri-implantitis surface detoxification: a systematic review and meta-analysis. J Periodontol 85:1194–1202. doi:10.1902/jop.2014.130620

  20. 20.

    Mettraux GR, Sculean A, Bürgin WB, Salvi GE (2016) Two-year clinical outcomes following non-surgical mechanical therapy of peri-implantitis with adjunctive diode laser application. Clin Oral Implants Res 27:845–849. doi:10.1111/clr.12689

  21. 21.

    Giannelli M, Landini G, Materassi F, Chellini F, Antonelli A, Tani A, Zecchi-Orlandini S, Rossolini GM, Bani D (2016) The effects of diode laser on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide adherent to titanium oxide surface of dental implants. An in vitro study. Lasers Med Sci 31:1613–1619

  22. 22.

    Sharma A, McQuillan AJ, Sharma LA, Waddell JN, Shibata Y, Duncan WJ (2015) Spark anodization of titanium-zirconium alloy: surface characterization and bioactivity assessment. J Mater Sci Mater Med 26:221. doi:10.1007/s10856-015-5555-7

  23. 23.

    Giannelli M, Pini A, Formigli L, Bani D (2011) Comparative in vitro study among the effects of different laser and LED irradiation protocols and conventional chlorhexidine treatment for deactivation of bacterial lipopolysaccharide adherent to titanium surface. Photomed Laser Surg 29:573–580. doi:10.1089/pho.2010.2958

  24. 24.

    Ryu HS, Kim YI, Lim BS, Lim YJ, Ahn SJ (2015) Chlorhexidine uptake and release from modified titanium surfaces and its antimicrobial activity. J Periodontol 86:1268–1275. doi:10.1902/jop.2015.150075

  25. 25.

    Urbani S, Caporale R, Lombardini L, Bosi A, Saccardi R (2006) Use of CFDA-SE for evaluating the in vitro proliferation pattern of human mesenchymal stem cells. Cytotherapy 8:243–253

  26. 26.

    Sassoli C, Chellini F, Squecco R, Tani A, Idrizaj E, Nosi D, Giannelli M, Zecchi-Orlandini S (2016) Low intensity 635 nm diode laser irradiation inhibits fibroblast-myofibroblast transition reducing TRPC1 channel expression/activity: new perspectives for tissue fibrosis treatment. Lasers Surg Med 48:318–332. doi:10.1002/lsm.22441

  27. 27.

    Giannelli M, Chellini F, Margheri M, Tonelli P, Tani A (2008) Effect of chlorhexidine digluconate on different cell types: a molecular and ultrastructural investigation. Toxicol in Vitro 22:308–317

  28. 28.

    Fujihara S, Yokozeki M, Oba Y, Higashibata Y, Nomura S, Moriyama K (2006) Function and regulation of osteopontin in response to mechanical stress. J Bone Miner Res 21:956–964

  29. 29.

    Davies JE (2003) Understanding peri-implant endosseous healing. J Dent Educ 67:932–949

  30. 30.

    Subramani K, Wismeijer D (2012) Decontamination of titanium implant surface and re-osseointegration to treat peri-implantitis: a literature review. Int J Oral Maxillofac Implants 27:1043–1054

  31. 31.

    Meyle J (2012) Mechanical, chemical and laser treatments of the implant surface in the presence of marginal bone loss around implants. Eur J Oral Implantol 5:S71–S81

  32. 32.

    Naddeo P, Laino L, La Noce M, Piattelli A, De Rosa A, Iezzi G, Laino G, Paino F, Papaccio G, Tirino V (2015) Surface biocompatibility of differently textured titanium implants with mesenchymal stem cells. Dent Mater 31:235–243. doi:10.1016/

  33. 33.

    Romanos GE, Everts H, Nentwig GH (2000) Effects of diode and Nd:YAG laser irradiation on titanium discs: a scanning electron microscope examination. J Periodontol 71:810–815

  34. 34.

    Terriza A, Díaz-Cuenca A, Yubero F, Barranco A, González-Elipe AR, Gonzalez Caballero JL, Vilches J, Salido M (2013) Light induced hydrophilicity and osteoblast adhesion promotion on amorphous TiO2. J Biomed Mater Res 101:1026–1035. doi:10.1002/jbm.a.34405

  35. 35.

    Allegrini S Jr, Yoshimoto M, Salles MB, de Almeida Bressiani AH (2014) Biologic response to titanium implants with laser-treated surfaces. Int J Oral Maxillofac Implants 29:63–70. doi:10.11607/jomi.3213

  36. 36.

    Lorenzetti M, Dakischew O, Trinkaus K, Lips KS, Schnettler R, Kobe S, Novak S (2015) Enhanced osteogenesis on titanium implants by UVB photofunctionalization of hydrothermally grown TiO2 coatings. J Biomater Appl 30:71–84. doi:10.1177/0885328215569091

  37. 37.

    Flanagan D (2016) Photofunctionalization of dental implants. J Oral Implantol 42:445–450

  38. 38.

    John G, Becker J, Schwarz F (2014) Effects of taurolidine and chlorhexidine on SaOS-2 cells and human gingival fibroblasts grown on implant surfaces. Int J Oral Maxillofac Implants 29:728–734. doi:10.11607/jomi.2956

  39. 39.

    Park JB, Lee G, Yun BG, Kim CH, Ko Y (2014) Comparative effects of chlorhexidine and essential oils containing mouth rinse on stem cells cultured on a titanium surface. Mol Med Rep 9:1249–1253. doi:10.3892/mmr.2014.1971

  40. 40.

    Vörös P, Dobrindt O, Perka C, Windisch C, Matziolis G, Röhner E (2014) Human osteoblast damage after antiseptic treatment. Int Orthop 38:177–182

  41. 41.

    Kozlovsky A, Artzi Z, Moses O, Kamin-Belsky N, Greenstein RB (2006) Interaction of chlorhexidine with smooth and rough types of titanium surfaces. J Periodontol 77:1194–1200

  42. 42.

    Cline NV, Layman DL (1992) The effects of chlorhexidine on the attachment and growth of cultured human periodontal cells. J Periodontol 63:598–602

  43. 43.

    Röhner E, Hoff P, Gaber T, Lang A, Vörös P, Buttgereit F, Perka C, Windisch C, Matziolis G (2015) Cytokine expression in human osteoblasts after antiseptic treatment: a comparative study between polyhexanide and chlorhexidine. J Investig Surg 28:1–7. doi:10.3109/08941939.2014.941445

  44. 44.

    Ellepola AN, Chandy R, Khan ZU (2016) In vitro impact of limited exposure to subtherapeutic concentrations of chlorhexidine gluconate on the adhesion-associated attributes of oral Candida species. Med Princ Pract 25:355–362. doi:10.1159/000445688

  45. 45.

    Balloni S, Locci P, Lumare A, Marinucci L (2016) Cytotoxicity of three commercial mouthrinses on extracellular matrix metabolism and human gingival cell behaviour. Toxicol in Vitro 34:88–96. doi:10.1016/j.tiv.2016.03.015

Download references


The authors are grateful to Dr. Benedetta Mazzanti (Department of Experimental and Clinical Medicine—Section of Hematology, University of Florence) for providing the human bone marrow MSCs and critically revising the experimental design and manuscript. The titanium discs were kindly provided by Nobel Biocare (Göteborg, Sweden) and Dental Laser System 4 × 4™ laser by General Project, Italy.

Author information

Correspondence to Chiara Sassoli.

Ethics declarations

Conflict of interest

The authors declare that they have not conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Local Ethical Committee approval no. prot. 23/2007 was obtained for isolation and collection of bone marrow-derived mesenchymal stromal cells.

Informed consent

Informed written consent was signed by all bone marrow donors.


This study was supported by Odontostomatologic Laser Therapy Center Via dell’ Olivuzzo 162, 50143, Florence, Italy and by grants from MIUR (Ministero dell’Istruzione dell’Università e della Ricerca—ex Ateneo 60%)—Italy to CS, DN, SZO.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chellini, F., Giannelli, M., Tani, A. et al. Mesenchymal stromal cell and osteoblast responses to oxidized titanium surfaces pre-treated with λ = 808 nm GaAlAs diode laser or chlorhexidine: in vitro study. Lasers Med Sci 32, 1309–1320 (2017) doi:10.1007/s10103-017-2243-5

Download citation


  • Osteoblasts
  • Mesenchymal stromal cells
  • Titanium dental implant
  • Diode laser therapy
  • Peri-implantitis
  • Chlorhexidine